The Crystal Structures at 10 K of the Trigonal Salts KMIII(NH3)6(ClO4)2Cl2, MIII = Os and Cr, and the Possibility of Phase Transitions

1999 ◽  
Vol 52 (3) ◽  
pp. 219 ◽  
Author(s):  
Philip A. Reynolds ◽  
Brian N. Figgis ◽  
Alexander N. Sobolev

The crystal structures of KOs(NH3)3(ClO4)2Cl2 and KCr(NH3)6(ClO4)2Cl2 were determined at 10 K by X-ray diffraction, and for the osmium salt also at 293 K. At 293 K the osmium salt is trigonal, space group R 3m, with the same simple structure as others of this class of double salt. At 10 K, in agreement with previous radius ratio predictions, both crystals are best described as remaining R 3m. All previously studied members, with larger alkali metal cations, are twinned R 3 at low temperatures, with small, symmetry-breaking rotations of the hexaamminemetal(III) and perchlorate ions about the threefold axis. Differential scanning calorimetry on CsRu(NH3)6(ClO4)2Cl2 suggests that the R 3m to R 3 change is very extended in temperature with only a small discontinuity at the transition temperature.

2012 ◽  
Vol 535-537 ◽  
pp. 950-953
Author(s):  
Li Na Bai ◽  
Gui Xing Zheng ◽  
Zhi Jian Duan ◽  
Jian Jun Zhang

The influences of Gd concentration on martensitic transformation and magnetic properties of NiMnIn alloys were investigated by differential scanning calorimetry (DSC) , vibrating sample magnetometry (VSM), X-ray diffraction (XRD) and etc. It is Observed through the experiment: the addition of Gd enhances martensite transition temperature;X-ray diffraction analysis of experimental alloys is revealed that to the mixture is martensite and austenite at room temperature; content of Gd is not proportional to the improvement of magnetic property.


2015 ◽  
Vol 70 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Martin Lampl ◽  
Gerhard Laus ◽  
Doris E. Braun ◽  
Volker Kahlenberg ◽  
Klaus Wurst ◽  
...  

AbstractThe preparation of six new 5,5′-azotetrazolates with organic cations is reported. Differential scanning calorimetry of all compounds showed exothermic decompositions. The crystal structures of the six 5,5′-azotetrazolates were determined by single-crystal X-ray diffraction analyses. The phase purities of the bulk samples were confirmed by Pawley fits of the experimental and calculated powder X-ray diffraction patterns.


2009 ◽  
Vol 635 ◽  
pp. 43-47 ◽  
Author(s):  
Sanjay Singh ◽  
S. Bhardwaj ◽  
A.K. Panda ◽  
V.K. Ahire ◽  
Amitava Mitra ◽  
...  

The martensitic transition and the ferro- to paramagnetic transition have been studied in a series of Ga excess Ni-Mn-Ga specimens [Ni2-xMnGa1+x (0.4≤ x≤ 0.9)] by differential scanning calorimetry and magnetization measurements. The martensitic transition exhibits a hysteresis whose width is similar to Ni2MnGa, indicating that the transition is thermoelastic. The latent heat of transformation is comparable with other Ni-Mn-Ga alloys. A substantial increase in the martensitic transition temperature is observed due to Ga doping. Interestingly, the x-ray diffraction pattern of all the compositions studied show a modulated martensitic structure in the martensitic phase.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 106 ◽  
Author(s):  
Hisashi Konaka ◽  
Akito Sasaki

Structural changes of chloride and bromide complexes, [Ni(Et2en)2(H2O)2]Cl2 (designated as 1a) and [Ni(Et2en)2]Br2 (2a), have been investigated by using simultaneous measurements of powder X-ray diffraction (XRD) and differential scanning calorimetry data under the temperature and humidity controls. The hydrate form of chloride complex 1a was transformed into an anhydrate form (1b) by heating at a temperature of 361 K. Then the 1b was reversibly returned to the original 1a by humidification at 25% relative humidity (RH) and temperature of 300 K. On the other hand, the anhydrate form of the bromide complex 2a was first transformed into a hydrate form (2b) at 30% RH and 300 K. On heating, the 2b turned to a new anhydrate form (2c) at 344 K, and then it returned to the original form 2a on further heating. In the present experiments, a series of reactions of 2a proceeded via 2c, which was newly found with the benefit of differential scanning calorimetry (DSC) measurements performed in parallel to the XRD measurements. Crystal structures of new crystalline forms of 1b, 2b, and 2c were determined from the powder XRD data.


2010 ◽  
Vol 663-665 ◽  
pp. 1229-1233 ◽  
Author(s):  
Shi Yong Luo ◽  
Wen Cai Xu ◽  
Xin Lin Zhang ◽  
Li Xia Huo

The glasses (80-x)TeO2·xV2O5·20MO (M=Sn, Bi, Ca, Na and K) had been examined as potential replacements for PbO-based glass frits with low firing temperature. The glasses with TeO2 0-44 mol%, and V2O5 39-82 mol% are not suitable for glass frit since they are easy to crystallize. The glasses with the content of the TeO2 54-74 mol%, and the V2O5 9-29 mol% were investigated by differential scanning calorimetry, X-ray diffraction, infrared spectra and fluidity evaluation experiments. The glasses possess appropriate fluidity and do not crystallize in the re-melting process at 723-753 K. The glass transition temperature of the glasses is at 544-578 K. The structure of the glasses is layer upon layer mainly connected by the structure units of [VO4] and [TeO3]. Other modifier ions locate mainly between the layers. The isolated V=O band from the VO5 bipyramids is not occurred in the vitreous structure of the glasses.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2012 ◽  
Vol 8 ◽  
pp. 371-378 ◽  
Author(s):  
Katharina C Kress ◽  
Martin Kaller ◽  
Kirill V Axenov ◽  
Stefan Tussetschläger ◽  
Sabine Laschat

4-Cyano-1,1'-biphenyl derivatives bearing ω-hydroxyalkyl substituents were reacted with methyl 3-chloro-3-oxopropionate or cyanoacetic acid, giving liquid-crystalline linear malonates and cyanoacetates. These compounds formed monotropic nematic phases at 62 °C down to ambient temperature upon cooling from the isotropic liquid. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction (WAXS).


1990 ◽  
Vol 45 (7) ◽  
pp. 1084-1090 ◽  
Author(s):  
Klaus Praefcke ◽  
Bernd Kohne ◽  
Andreas Eckert ◽  
Joachim Hempel

Six S,S-dialkyl acetals 2a-f of inosose (1), tripodal in structure, have been synthesized, characterized and investigated by optical microscopy and differential scanning calorimetry (d.s.c.). The four S,S-acetals 2c-f with sufficiently long alkyl chains are thermotropic liquid crystalline; 2 e and 2 f are even dithermomesomorphic. Each of these four inosose derivatives 2c-f exhibits monotropically a most likely cubic mesophase (MI); in addition 2e and 2f show enantiotropically a hexagonal mesophase (Hx) with a non-covalent, supramolecular H-bridge architecture. Whereas the nature of the optically isotropic mesophase MI needs further clarification the stable high temperature mesophase Hx of 2 e and 2 f has been established by a miscibility test using a sugar S,S-dialkyl acetal also tripodal in structure and with a Hx phase proved by X-ray diffraction, but in contrast to 2 with an acyclic hydrophilic part. Similarities of structural features between the Hx-phases of 2e and 2f as well as of other thermotropic and lyotropic liquid crystal systems are discussed briefly.


2021 ◽  
Author(s):  
Alexander J. Stirk ◽  
Fabio E. S. Souza ◽  
Jenny Gerster ◽  
Fatemeh M. Mir ◽  
Avedis Karadeolian ◽  
...  

Crystallisations on both the academic and industrial scale often use large volumes of solvent. In order decrease the environmental impact of such processes, new techniques must be discovered that increase the efficiency of the solvents used. Introduced here is a process that combines repurposed industry standard hardware and aspects of mechanochemistry to produce a technique we call “Vapour Assisted Tumbling” (VAT). Pharmaceutical and well-known cocrystals and salts were formed by tumbling the coformers in an atmosphere of vaporised solvent, in this study, methanol (MeOH). This was done inside a custom built analogue of an industrial rotary cone dryer (RCD). It was found that a desired solid form could be obtained as monitored by powder X-ray diffraction and differential scanning calorimetry. By repurposing industrial RCDs, it is feasible that solid forms can be crystallised with both minimal and reusable/recyclable solvent – drastically lowering the environmental impact of such transformations.


Sign in / Sign up

Export Citation Format

Share Document