Micropatterned Arrays of ZnSe Nanospheres as Antireflection Coatings

2014 ◽  
Vol 67 (10) ◽  
pp. 1427 ◽  
Author(s):  
S. Sasi Florence ◽  
Priyanka Sachan ◽  
Raju Kumar Gupta ◽  
Rita John ◽  
Umadevi Mahalingam

In this work, we demonstrate deposition of micro-arrays of ZnSe nanospheres on Si (100) substrate using simple thermal evaporation on a self-assembled sacrificial polystyrene (PS) mask. The results have been compared with the deposition on unpatterned gold catalyst- and SU-8 (negative photoresist)-coated Si substrates. The deposited ZnSe nanospheres properties were characterised by X-ray diffraction, atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman, photoluminescence, and UV-vis spectroscopies. The X-ray diffraction patterns of the films exhibited reflection corresponding to the cubic (111) phase and showed polycrystallinity with a cubic (zinc blende) structure. The SEM and AFM images indicated that the particles were well dispersed and spherical in shape. The micro-arrays of ZnSe nanospheres on a self-assembled sacrificial PS mask showed excellent structural, morphological, and optical properties and demonstrated its usage in photovoltaic devices as an improved superior antireflective coating. The reflectance of the micro-arrays of ZnSe nanospheres on a self-assembled sacrificial PS mask decreased to nearly half of that of the ZnSe nanospheres fabricated on Au- and SU-8-coated Si substrates in the range of 300–800 nm. Due to the well aligned and patterned surfaces, these noble textured ZnSe nanospheres may be suitable for low cost, large area photovoltaic devices and other antireflection applications.

2010 ◽  
Vol 43 (6) ◽  
pp. 1287-1299 ◽  
Author(s):  
E. Wintersberger ◽  
D. Kriegner ◽  
N. Hrauda ◽  
J. Stangl ◽  
G. Bauer

A set of algorithms is presented for the calculation of X-ray diffraction patterns from strained nanostructures. Their development was triggered by novel developments in the recording of scattered intensity distributions as well as in simulation practice. The increasing use of two-dimensional CCD detectors in X-ray diffraction experiments, with which three-dimensional reciprocal-space maps can be recorded in a reasonably short time, requires efficient simulation programs to compute one-, two- and three-dimensional intensity distributions. From the simulation point of view, the finite element method (FEM) has become the standard tool for calculation of the strain and displacement fields in nanostructures. Therefore, X-ray diffraction simulation programs must be able to handle FEM data properly. The algorithms presented here make use of the deformation fields calculated on a mesh, which are directly imported into the calculation of diffraction patterns. To demonstrate the application of the developed algorithms, they were applied to several examples such as diffraction data from a dislocated quantum dot, from a periodic array of dislocations in a PbSe epilayer grown on a PbTe pseudosubstrate, and from ripple structures at the surface of SiGe layers deposited on miscut Si substrates.


2010 ◽  
Vol 25 (12) ◽  
pp. 2426-2429 ◽  
Author(s):  
Guangjun Wang ◽  
Gang Cheng ◽  
Binbin Hu ◽  
Xiaoli Wang ◽  
Shaoming Wan ◽  
...  

In this paper, polycrystalline CuIn(SxSe1–x)2 thin films with tunable x and Eg (band gap) values were prepared by controlling the sulfurization temperature (T) of CuInSe2 thin films. X-ray diffraction indicated the CuIn(SxSe1–x)2 films exhibited a homogeneous chalcopyrite structure. When T increases from 150 to 500 °C, x increases from 0 to 1, and Eg increases from 0.96 to 1.43 eV. The relations between x and Eg and the sulfurization process of CuIn(SxSe1–x)2 thin films have been discussed. This work provides an easy and low-cost technique for preparing large area absorber layers of solar cell with tunable Eg.


2010 ◽  
Vol 1256 ◽  
Author(s):  
Danilo G Barrionuevo ◽  
Surinder P Singh ◽  
Ram S Katiyar ◽  
Maharaj S. Tomar

AbstractMaterials which possess electrical and magnetic coupling are of great interest for novel devices. Bi(Fe1-xCox)O3 (BFCO) material system was synthesized by solution route for various compositions and thin films were prepared by spin coating on Pt (Pt/Ti/SiO2/Si) substrates. Structural properties of the films were investigated by x-ray diffraction and Raman spectroscopy. X-ray diffraction patterns confirms intense (110) in BiFeO3 and Bi(Fe1-xCox)O3 with rhombohedra distorted perovskite structure without impure phase. Bi(Fe1-xCox)O3 films show week ferroelectric polarization and ferromagnetism at room temperature. Ferroelectric and ferromagnetic coupling could be attributed to the elimination of oxygen vacancies and increased stress in the crystal structure by partial replacement of Fe2+ ion by Co2+ ion.


1996 ◽  
Vol 448 ◽  
Author(s):  
A.A. Darhuber ◽  
V. Holy ◽  
J. Stangl ◽  
G. Bauer ◽  
P. Schittenhelm ◽  
...  

AbstractSelf-organized Ge-dots on (001)-oriented Si-substrates have been studied using two-dimensionally resolved high resolution x-ray diffraction and reflectivity. The degree of the vertical correlation of the dot positions ("stacking") has been derived as well as a lateral ordering of the dots in a (disordered) square array with main axes parallel to ]100] and ]010].


Author(s):  
Gopal G. Pethuraja ◽  
Adam Sood ◽  
Roger Welser ◽  
Ashok K. Sood ◽  
Harry Efstathiadis ◽  
...  

2002 ◽  
Vol 721 ◽  
Author(s):  
Volkmar Weiß ◽  
Rainald Mientus ◽  
Klaus Ellmer

AbstractThe textured film growth of polycrystalline MoSxfilms on Si substrates deposited by reactive magnetron sputtering with H2S from a molybdenum target has been investigated. Over a wide range of gas flow ratios FH2S/(FH2S+FAr) from 1% to 75% only x-ray diffraction patterns of randomly stacked S-Mo-S layers of the MoS2phase were detected which indicates turbostratic growth of the van-der-Waals layers comparable to the growth of graphite at low temperatures. The extended distance of the c-lattice planes depends on the sputtering conditions and can also be explained by the turbostratic model. Low deposition rates and high substrate temperatures improved the quality of the films towards the requested (001) texture and low c-lattice strain. The results from the in situ-energy dispersive x-ray diffraction (EDXRD) technique using synchrotron radiation allowed kinetic calculations of the time dependent behaviour of the peak area of the (0 0 21) Bragg reflection signals according to the Johnson-Mehl-Avrami model. They revealed that the grain growth is restricted in dimensions if a completed nucleation is assumed.


2015 ◽  
Vol 48 (4) ◽  
pp. 1342-1345 ◽  
Author(s):  
William Whitley ◽  
Chris Stock ◽  
Andrew D. Huxley

Although CCD X-ray detectors can be faster to use, their large-area versions can be much more expensive than similarly sized photographic plate detectors. When indexing X-ray diffraction patterns, large-area detectors can prove very advantageous as they provide more spots, which makes fitting an orientation easier. On the other hand, when looking for single crystals in a polycrystalline sample, the speed of CCD detectors is more useful. A new setup is described here which overcomes some of the limitations of limited-range CCD detectors to make them more useful for indexing, whilst at the same time making it much quicker to find single crystals within a larger polycrystalline structure. This was done by combining a CCD detector with a six-axis goniometer, allowing the compilation of images from different angles into a wide-angled image. Automated scans along the sample were coupled with image processing techniques to produce grain maps, which can then be used to provide a strategy to extract single crystals from a polycrystal.


2012 ◽  
Vol 241-244 ◽  
pp. 46-49
Author(s):  
Gong Long Liu ◽  
Liao Yang ◽  
Wei Min Shi ◽  
Wei Guang Yang ◽  
Ya Li Wang ◽  
...  

Potentially low cost and large-area polycrystalline mercuric iodide (α-HgI2) is one of the preferred materials for the fabrication of room temperature X-ray and gamma-ray detectors. In this paper, polycrystalline α-HgI2 films have been grown through combining vertical deposition method with hot wall vapor phase deposition (HWPVD) method. X-ray diffraction (XRD), scan electron microscopes (SEM) and Raman spectrum were used to characterization the HgI2 films obtained, and I-V characteristics was also tested. Using the polycrystalline α-HgI2 films, we get the detector. According to the detector, on the one hand, a dark current test is made by using KEITHL EY 485 picoammeter; on the other hand, the Agilent 4294A precision impedance analyzer is taken to test the characteristic curve of its capacitor frequency.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 262 ◽  
Author(s):  
Ayotunde Adigun Ojo ◽  
Imyhamy Mudiy Dharmadasa

The attributes of electroplating as a low-cost, simple, scalable, and manufacturable semiconductor deposition technique for the fabrication of large-area and nanotechnology-based device applications are discussed. These strengths of electrodeposition are buttressed experimentally using techniques such as X-ray diffraction, ultraviolet-visible spectroscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and photoelectrochemical cell studies. Based on the results of structural, morphological, compositional, optical, and electronic properties evaluated, it is evident that electroplating possesses the capabilities of producing high-quality semiconductors usable for producing excellent devices. In this paper we will describe the progress of electroplating techniques mainly for the deposition of semiconductor thin film materials and their treatment processes, and fabrication of solar cells.


2017 ◽  
Vol 50 (6) ◽  
pp. 1716-1724 ◽  
Author(s):  
Mohd. Shkir ◽  
V. Ganesh ◽  
S. AlFaify ◽  
K. K. Maurya ◽  
N. Vijayan

In this work, the growth of large size (∼25 × 29 × 5 mm and ∼25 × 24 × 6 mm) colorful single crystals of zinc (tris) thiourea sulfate (ZTS) in the presence of 0.05–2 wt% phenol red (PR) dye was achieved using a simple and low-cost technique. Powder X-ray diffraction patterns confirm the presence of PR dye, which is indicated by an enhancement of the Raman peak intensities, a shift in their position and the appearance of a few extra peaks. The quality of the grown crystals was assessed by high-resolution X-ray diffraction, which shows that the crystalline perfection of 1 wt% PR-dyed ZTS crystals is better than that of 2 wt% PR-dyed crystals. The measured UV–vis absorbance spectra show two additional, strong absorption bands at ∼430 and 558 nm in the dyed crystals, due to the presence of PR dye, along with a band at ∼276 nm which is present for all crystals but is slightly shifted for the dyed crystals. Photoluminescence spectra were recorded at two excitation wavelengths (λexc= 310 and 385 nm). The luminescence intensity is found to be enriched in dyed crystals, with some extra emission bands. An enhancement in the value of the dielectric constant and a.c. electrical conductivity was also observed in the dyed ZTS crystals.


Sign in / Sign up

Export Citation Format

Share Document