Ligand-Stabilized ZnO Quantum Dots: Molecular Dynamics and Experimental Study

2017 ◽  
Vol 70 (10) ◽  
pp. 1110 ◽  
Author(s):  
Rohul Hayat Adnan ◽  
Kai Lin Woon ◽  
Narong Chanlek ◽  
Hideki Nakajima ◽  
Wan Haliza Abd. Majid

Different aminoalcohol ligands, monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) were employed to passivate the surface of ZnO quantum dots (ZnO QDs). High-resolution transmission electron microscopy (HRTEM) imaging revealed that the higher branched aminoalcohols produced smaller sized ZnO QDs. The average size for ZnO/MEA, ZnO/DEA, and ZnO/TEA were found to be 3.2, 2.9, and 2.4 nm. TEA ligands were effective in producing stable, monodisperse ZnO QDs compared with DEA and MEA ligands. Molecular dynamics and semi-empirical calculations suggested that TEA and DEA ligands interact strongly with the partial charge of ZnO dangling bonds and have a large molar volume to hinder the diffusion of precursors through the ligands to the surface of ZnO resulting in a smaller particle size as compared with MEA ligands. As the size of ZnO QDs decreases from ZnO/MEA to ZnO/TEA, the absorption edge and emission peak maximum blue-shifts to a shorter wavelength due to the quantum size effect. The bandgap of ZnO/MEA, ZnO/DEA, and ZnO/TEA was determined to be 3.97, 4.07, and 4.23 eV, and the emission peak was found to be 472, 464, and 458 nm when excited using a 325 nm excitation wavelength, respectively.

2011 ◽  
Vol 364 ◽  
pp. 129-133 ◽  
Author(s):  
Liyana Mohd Lawi Ruhana ◽  
Taqiyuddin Mawardi Ayob Muhammad ◽  
Radiman Shahidan ◽  
Irman Abdul Rahman ◽  
Bohari M. Yamin

CdS/ZnO quantum dots (QDs) were prepared at a temperature of 293 K by the sol-gel method with Triethanolamine (TEA) as a capping agent. The effect of CdS/ZnO mixture ratio of 1:9, 1:1 and 9:1 on the optical absorption and fluorescence spectra were investigated by UV-Vis and Fluorescence spectroscopy. By increasing ZnO composition, a blue-shift of absorption edge and emission spectra were observed. The band gap for 1:9, 1:1 and 9:1 were found to be 4.13, 3.93 and 3.11 eV, respectively. The morphology of the CdS/ZnO QDs for each mixing ratio was obtained by transmission electron microscope (TEM). The size of the QDs was found to be in the range of 5-10 nm with some agglomerated particles.


2016 ◽  
Vol 16 (4) ◽  
pp. 3597-3601
Author(s):  
Fengyi Liu ◽  
Hong Li ◽  
Yajing Hu ◽  
Na Jin ◽  
Yun Mou ◽  
...  

In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol–gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5–6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism.


2020 ◽  
Vol 12 (2) ◽  
pp. 278-283
Author(s):  
Dipankar Chakdar ◽  
Abubakkar Siddik ◽  
Nikita Ghosh ◽  
Gautam Gope ◽  
Prabir Kumar Haldar

ZnO quantum dots of average size 10 nm are embedded in a matrix (polyvinyl alcohol (PVA)) following chemical route. They are irradiated by 100 MeV Ni7+ ion beam with fluences 1 × 1011, 3 × 1011, 1 × 1012 and 3 × 1012 ions/cm2. The optical absorption edge of irradiated quantum dots reveal negligible red shift with an increase in fluences with respect to that of unirradiated (virgin) ones. This fact clearly indicates no significant change in particle diameter under ion irradiation and is confirmed by high resolution transmission electron microscopy (TEM). AFM study also reveals the r.m.s surface roughness of the particles. It has also been observed that irradiated quantum dots produce similar type of photo luminescence and electroluminescence like virgin samples but the emission intensity increases remarkably after irradiation due to creation of large numbers oxygen vacancies by the ion beam.


2009 ◽  
Vol 1207 ◽  
Author(s):  
Xi Zhang ◽  
Dazhi Sun ◽  
Hung-Jue Sue

AbstractMonodisperse ZnO quantum dots (QDs) with a particle size of about 5 nm have been synthesized. Isopropanol together with hexane were utilized to precipitate ZnO nanoparticles to form condensed phases, ranging from white flocculation, to gel-like fluid, and to transparent solid. The morphology and structure in the transparent ZnO solid was characterized by UV-vis, X-ray diffraction, small-angle X-ray scattering, transmission electron microscopy, and scanning electron microscopy. The mechanisms for the formation of transparent ZnO QDs close-packed structure were monitored via UV-vis spectra, and found likely to be a colloidal crystal. The colloidal crystal is transparent and absorbs UV light efficiently. Possible conditions for the formation of the ZnO QDs colloidal crystal are discussed.


2021 ◽  
Vol 22 (15) ◽  
pp. 8106
Author(s):  
Tianming Song ◽  
Yawei Qu ◽  
Zhe Ren ◽  
Shuang Yu ◽  
Mingjian Sun ◽  
...  

Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.


2015 ◽  
Vol 34 ◽  
pp. 73-78
Author(s):  
Irtiqa Syed ◽  
Santa Chawla

A novel one pot synthesis approach in oleic acid medium was employed to obtain monophasic ZnSe quantum dots (QD) of average size 3.7nm. The QDs were well crystalline in hexagonal phase as revealed by x-ray diffraction and high resolution transmission electron microscopy (HRTEM) studies. The ZnSe QDs exhibit sharp emission peak in the blue (465nm) with 385picosecond fluorescence decay time. The theoretical band gap corresponding to 3.7nm ZnSe QDs matched well with the measured 3.11eV band gap of synthesized QDs which thus showed quantum confinement effect.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


2017 ◽  
Vol 8 ◽  
pp. 2264-2270 ◽  
Author(s):  
Xiao Shao ◽  
Weiyue Xin ◽  
Xiaohong Yin

ZnO quantum dots and KNb3O8 nanosheets were synthesized by a two-step hydrothermal method for the photocatalytic reduction of CO2 to methanol where isopropanol is simultaneously oxidized to acetone . The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activity of the materials was evaluated by formation rate of methanol under UV light irradiation at ambient temperature and pressure. The methanol formation rate of pure KNb3O8 nanosheets was found to be 1257.21 μmol/g/h, and after deposition of 2 wt % ZnO quantum dots on the surface of KNb3O8 nanosheets, the methanol production rate was found to increase to 1539.77 μmol/g/h. Thus, the ZnO quantum dots obviously prompted separation of charge carriers, which was explained by a proposed mechanism for this photocatalytic reaction.


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90838-90846 ◽  
Author(s):  
Buddha Deka Boruah ◽  
Abha Misra

Heterostructures comprised of zinc oxide quantum dots (ZnO QDs) and graphene are presented for ultraviolet photodetectors (UV PD).


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1492 ◽  
Author(s):  
Rafael Souza da Costa ◽  
Wiliam Ferreira da Cunha ◽  
Nizamara Simenremis Pereira ◽  
Artemis Marti Ceschin

Peat, an organic compound easily found in the soil (easy to acquire), has more than 50% elemental carbon in its composition and can be used as raw material to produce carbon quantum dots (CQDs, C-dots, Carbon Dots). In this work we describe two simple and low-cost routes for the acquisition of these photoluminescent materials based on peat. The final products were characterized by Fourier transform infrared spectroscopy (FTIR), absorption (UV-Vis) and emission (PL) spectra and high-resolution transmission electron microscopy (HRTEM). The produced CQDs have an average size of 3.5 nm and exhibit coloration between blue and green. In addition, it is possible to produce photoluminescence by means of the aromatic compounds also present in the composition of the peat, in turn exhibiting an intense green coloration. The results indicate great versatility of peat for the production of photoluminescent materials.


Sign in / Sign up

Export Citation Format

Share Document