How do glycine and histidine in nutrient solution affect zinc uptake and root-to-shoot translocation by wheat and triticale?

2015 ◽  
Vol 66 (11) ◽  
pp. 1105 ◽  
Author(s):  
K. Khodamoradi ◽  
A. H. Khoshgoftarmanesh ◽  
N. Dalir ◽  
M. Afyuni ◽  
R. Schulin

Understanding how complexes with amino acids in soil solution affect plant zinc (Zn) uptake may aid in optimising plant Zn nutrition. We investigated the influence of histidine and glycine in nutrient solution on apoplastic and symplastic uptake and root-to-shoot translocation of Zn in a triticale (×Triticosecale cv. Elinor) and a bread wheat cultivar (Triticum aestivum cv. Back Cross Rushan). Six-week-old seedlings of the two cultivars were transferred to a nutrient solution containing 20 µm Zn, to which 50 µm histidine, 50 µm glycine or no amino acids were added. Control plants were transplanted to nutrient solution with no Zn or amino acids. Higher concentrations of Zn were found in root and shoots of wheat and triticale plants supplied with Zn than in the control plants without Zn supply. Among the treatments with Zn supply, histidine enhanced, whereas glycine reduced, symplastic root Zn concentration in bread wheat. Both amino acids decreased the symplastic root Zn concentration but had no effect on apoplastic Zn in triticale. Both amino acid treatments also reduced Zn concentrations in the xylem sap of the two plant species compared with the treatment with Zn addition only. In bread wheat, the effect was stronger for glycine than for histidine; in triticale, it was the same for both amino acids. The concentration of Zn in xylem sap was always greater in wheat than in triticale. Addition of histidine to the nutrient solution increased the total amount of shoot Zn in triticale but not in bread wheat, compared with the treatment with Zn addition only, whereas glycine had no significant effect on total shoot Zn in either of the plant species. The results show that histidine, but not glycine, can enhance Zn uptake and translocation into the aboveground parts of triticale. We suggest that this ability of histidine was due to the formation of strong complexes with Zn.

2017 ◽  
Vol 68 (5) ◽  
pp. 415 ◽  
Author(s):  
K. Khodamoradi ◽  
A. H. Khoshgoftarmanesh ◽  
S. A. M. Mirmohammady Maibody

Organic acids exuded from plant roots significantly modify uptake and long-distance translocation of metals. Little is known about the effect of amino acids on metal ion uptake by plant roots. The present study investigated the effects of exogenous amino acids (histidine and glycine) in a nutrient solution on root uptake and xylem sap transport of cadmium (Cd) in triticale (× Triticosecale cv. Elinor) and bread wheat (Triticum aestivum L. cv. Back Cross Rushan). Plant seedlings were grown in a Cd-free modified Hoagland nutrient solution to which 1 µm Cd was added with either 50 µm histidine or 50 µm glycine or without amino acids at 4 weeks after germination. A control treatment consisted of a nutrient solution free of Cd and amino acids. In bread wheat, addition of histidine to the Cd-containing nutrient solution resulted in a higher operationally defined symplastic Cd fraction but a lower apoplastic one in the roots. In triticale, addition of either amino acid decreased the symplastic Cd fraction but increased the apoplastic one. Addition of histidine to the nutrient solution increased Cd concentration in wheat xylem sap but had no significant effect on Cd concentration in triticale xylem sap. Compared with the Cd-only treatment, the glycine-containing treatment led to significantly reduced Cd concentrations in xylem sap of both plant species. Wheat plants supplied with histidine and Cd accumulated greater amounts of Cd in their shoots than those supplied with Cd alone. Glycine had no significant effects on the Cd content of wheat shoots but decreased it in triticale shoots. Results indicate that the effects of amino acids on plant root uptake and xylem sap translocation of Cd depend on the type of amino acid supplemented. This finding is of great importance for selecting and/or breeding cultivars with Cd-toxicity tolerance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bao-Gang Yu ◽  
Xiu-Xiu Chen ◽  
Wen-Qing Cao ◽  
Yu-Min Liu ◽  
Chun-Qin Zou

Negative effects of high phosphorus (P) application on zinc (Zn) nutrition have been observed in many crops. This study investigated the Zn responses of three typical crops to varied P and Zn applications. A pot experiment was conducted using two mycorrhizal crops (maize and soybean) and one non-mycorrhizal crop (oilseed rape) under three levels of P, two levels of Zn, and two levels of benomyl. Results showed that P application significantly decreased shoot and root Zn concentrations, Zn uptake, and Zn acquisition efficiency (ZnAE) of the three crops irrespective of Zn rate, and that these reductions were greater for maize and soybean than for oilseed rape. Zn application alleviated the P inhibition of Zn uptake in the three crops. The arbuscular mycorrhizal fungi (AMF) colonization of maize and soybean contributed most to the negative effects of increasing P application on Zn uptake, explaining 79–89 and 64–69% of the effect, respectively. For oilseed rape, root dry weight and root Zn concentration explained 90% of the decrease in Zn uptake caused by P application. These results suggest that there is another pathway in addition to the mycorrhizal pathway regulating Zn uptake under mediation by P supply.


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 205-208 ◽  
Author(s):  
G.H. Neilsen ◽  
E.J. Hogue ◽  
D. Neilsen ◽  
P. Bowen

Zinc supplied as a fulvic-based Zn compound was absorbed and retranslocated to unsprayed new growth as effectively as zinc sulphate in apple seedlings of low Zn status grown hydroponically in the greenhouse. Similarly, fulvic- and humic-based compounds were as effective as zinc sulphate at improving short-term growth and Zn uptake into new tissues in Zn-deficient apple seedlings, with the best growth occurring at spray concentrations of Zn at 500 mg·L-1. Under field conditions, Zn concentration of peeled and washed `Jonagold' apples at harvest was increased, without phytotoxicity, by two or four postbloom sprays of fulvic Zn. It is therefore possible to use this material safely as an effective Zn-source after bloom. However the mobility of the foliar-applied Zn is limited and any yield response by treated apple orchards of marginal Zn nutrition is unlikely to occur in the short term (within two growing seasons).


1988 ◽  
Vol 15 (4) ◽  
pp. 557 ◽  
Author(s):  
MJ Canny ◽  
ME Mccully

Three methods of sampling xylem sap of maize roots were compared: sap bleeding from the stem cut just above the ground; sap bleeding from the cut tops of roots still undisturbed in the ground; and sap aspirated from excavated roots under reduced pressure. The bleeding saps were often unobtainable. When their composition was measured with time from cutting, the concentrations of the major solutes approximately doubled in 2 h. Aspirated sap was chosen as the most reliable sample of root xylem contents. Solute concentrations of the saps showed great variability between individual roots for all solutes, but on average the concentrations found (in �mol g-1 sap) were: total amino acids, 1.8; nitrate, 1.8; sugars (mainly sucrose), 5.4; total organic acids, 18.3. Individual amino acids also varied greatly between roots. Glutamine, aspartic acid and serine were generally most abundant. The principal organic acid found was malic, approximately 8 �mol g-1. From these analyses the ratios of carbon in the fractions (sugars : amino acids : organic acids) = (44 : 6 : 50). 14Carbon pulse fed to a leaf appeared in the root sap within 30 min, rose to a peak at 4-6 h, and declined slowly over a week. During all this time the neutral, cation and anion fractions were sensibly constant in the proportions 86 : 10 : 4. The 14C therefore did not move towards the equilibrium of 12C-compounds in the sap. It is argued that the results do not support a hypothesis of formation of amino carbon from recent assimilate and reduced nitrate in the roots and an export of this to the shoot in the transpiration stream.


1990 ◽  
Vol 68 (9) ◽  
pp. 1942-1947 ◽  
Author(s):  
Philippe Brunet ◽  
Bruno Sarrobert ◽  
Nicole Paris-Pireyre ◽  
Ange-Marie Risterucci

Two species of tomato, Lycopersicon esculentum Mill. var. EGE12P1 and Lycopersicon hirsutum Humb. & Bonpl. ecotype LA 1777, were submitted to two temperature treatments, 20 or 10 °C. After a short study of plant growth, we analysed the chemical composition (cations, anions, and amino acids) of xylem sap by high performance liquid chromatography. A comparison of fresh weight increase at 20 and 10 °C of both plant species showed that L. hirsutum was the least affected by low temperature. The volumes of secreted sap and the quantities of ions transported showed great disturbances in the sensitive species (L. esculentum), especially in the case of potassium. In xylem sap of both species studied, but only at 10 °C, we noticed the appearance of ammonium. The possibility of contamination during analytical processing was eliminated. Moreover, determinations of amino acids levels showed that ammonium did not arise from degradation of amides present in xylem sap. In any event, the proportion of nitrate absorbed and reduced in roots increased at low temperature; it is much more important in L. hirsutum and could constitute a tolerance factor to low temperatures. Key words: ammonium, low temperature, Lycopersicon, xylem sap.


2016 ◽  
Vol 46 (7) ◽  
pp. 1136-1141 ◽  
Author(s):  
Anderson Carlos Marafon ◽  
Flavio Gilberto Herter ◽  
Fernando José Hawerroth ◽  
Adriana Neutzling Bierhals

ABSTRACT: Storage and remobilization are considered key processes for the effective use of nitrogen in temperate fruit trees. As dormancy begins, storage proteins are synthesized, coinciding with a reduction in the levels of free amino acids. Consequently, as dormancy breaks, these storage proteins are degraded, and an increase in the concentrations of amino acids occurs, in order to support new growth. The objective of this study was to evaluate water content of different vegetative tissues (buds, bark, and bole wood), volume of xylem sap, and free amino acid concentrations of xylem sap, during winter dormancy of Hosui Japanese pear trees (VL). Plant material was obtained from the Embrapa Temperate Climate experimental orchard at Pelotas, in the state of Rio Grande do Sul, Brazil. Xylem sap was extracted from the branches with the aid of a vacuum pump, and the free amino acids were determined by gas chromatography, using the EZ kit: Faast GC/FID (Phenomenex). Water content of buds, as well as the volume of sap and concentrations of both aspartic acid and asparagine, substantially increased over time, reaching maximum values in the phase preceding sprouting.


Sign in / Sign up

Export Citation Format

Share Document