scholarly journals Postbloom Humic- and Fulvic-based Zinc Sprays Can Improve Apple Zinc Nutrition

HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 205-208 ◽  
Author(s):  
G.H. Neilsen ◽  
E.J. Hogue ◽  
D. Neilsen ◽  
P. Bowen

Zinc supplied as a fulvic-based Zn compound was absorbed and retranslocated to unsprayed new growth as effectively as zinc sulphate in apple seedlings of low Zn status grown hydroponically in the greenhouse. Similarly, fulvic- and humic-based compounds were as effective as zinc sulphate at improving short-term growth and Zn uptake into new tissues in Zn-deficient apple seedlings, with the best growth occurring at spray concentrations of Zn at 500 mg·L-1. Under field conditions, Zn concentration of peeled and washed `Jonagold' apples at harvest was increased, without phytotoxicity, by two or four postbloom sprays of fulvic Zn. It is therefore possible to use this material safely as an effective Zn-source after bloom. However the mobility of the foliar-applied Zn is limited and any yield response by treated apple orchards of marginal Zn nutrition is unlikely to occur in the short term (within two growing seasons).

2015 ◽  
Vol 66 (11) ◽  
pp. 1105 ◽  
Author(s):  
K. Khodamoradi ◽  
A. H. Khoshgoftarmanesh ◽  
N. Dalir ◽  
M. Afyuni ◽  
R. Schulin

Understanding how complexes with amino acids in soil solution affect plant zinc (Zn) uptake may aid in optimising plant Zn nutrition. We investigated the influence of histidine and glycine in nutrient solution on apoplastic and symplastic uptake and root-to-shoot translocation of Zn in a triticale (×Triticosecale cv. Elinor) and a bread wheat cultivar (Triticum aestivum cv. Back Cross Rushan). Six-week-old seedlings of the two cultivars were transferred to a nutrient solution containing 20 µm Zn, to which 50 µm histidine, 50 µm glycine or no amino acids were added. Control plants were transplanted to nutrient solution with no Zn or amino acids. Higher concentrations of Zn were found in root and shoots of wheat and triticale plants supplied with Zn than in the control plants without Zn supply. Among the treatments with Zn supply, histidine enhanced, whereas glycine reduced, symplastic root Zn concentration in bread wheat. Both amino acids decreased the symplastic root Zn concentration but had no effect on apoplastic Zn in triticale. Both amino acid treatments also reduced Zn concentrations in the xylem sap of the two plant species compared with the treatment with Zn addition only. In bread wheat, the effect was stronger for glycine than for histidine; in triticale, it was the same for both amino acids. The concentration of Zn in xylem sap was always greater in wheat than in triticale. Addition of histidine to the nutrient solution increased the total amount of shoot Zn in triticale but not in bread wheat, compared with the treatment with Zn addition only, whereas glycine had no significant effect on total shoot Zn in either of the plant species. The results show that histidine, but not glycine, can enhance Zn uptake and translocation into the aboveground parts of triticale. We suggest that this ability of histidine was due to the formation of strong complexes with Zn.


1978 ◽  
Vol 39 (2) ◽  
pp. 297-306 ◽  
Author(s):  
J. K. Chesters ◽  
Marie Will

1.65Zn uptake by blood cells in vitro has been compared with plasma Zn concentration and plasma alkaline phosphatase (EC3.1.3.1) activity as indicators of an animal's Zn status.2. Dietary Zn deficiency, low food intake, reduced dietary protein content and endotoxin administration all reduced plasma Zn concentration in the rat. In each case there was a parallel reduction in plasma alkaline phosphatase activity and an increase in65Zn uptake in vitro by cells of whole blood.3. A similar relationship between the three measurements existed in sheep with lowered plasma Zn concentrations whether these were caused by dietary deficiency or by post-surgical stress.4.65Zn uptake by cells of whole blood did not differentiate dietary Zn deficiency from the other factors which reduce plasma Zn under ‘field’ conditions.5.65Zn uptake by the cells in whole blood in vitro was three to five times less rapid in blood of ruminant origin than in that from non-ruminants. This difference related to the erythrocytes rather than to the leukocytes or the plasma.


1987 ◽  
Vol 108 (2) ◽  
pp. 275-279 ◽  
Author(s):  
M. V. Singh ◽  
R. Chhabra ◽  
I. P. Abrol

SummaryA field experiment on an alkali soil (ESP 94) studied the effect of gypsum applied at 0, 2·5, 5 and 10t/ha and zinc sulphate applied at 0, 10, 20, 30 and 40 kg/ha on the growth, yield and chemical composition of rice. The effects of gypsum and zinc applications were additive. Optimum response of rice was to 10 kg zinc sulphate/ha at the 5 and 10 t/ha gypsum levels. At low levels of gypsum, plant growth was poor owing to toxicity of Na and/or deficiency of Ca, and higher levels of zinc sulphate gave a yield response. Zinc-deficient plants had significantly lower Zn concentration but higher concentrations of Fe, Mn, Cu, Ca and Mg than the healthy plants. Application of gypsum decreased the concentration of Na, Fe and Zn in rice plants and increased the concentration of Ca, K, Mn and Cu. in plots not treated with gypsum, the Zn concentration of plants was higher but grain yield was lower than that of gypsum-treated plots. Application of zinc increased the DTPA-extractable Zn but gypsum decreased the soil sodicity and DTPA-extractable Zn in alkali soils.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bao-Gang Yu ◽  
Xiu-Xiu Chen ◽  
Wen-Qing Cao ◽  
Yu-Min Liu ◽  
Chun-Qin Zou

Negative effects of high phosphorus (P) application on zinc (Zn) nutrition have been observed in many crops. This study investigated the Zn responses of three typical crops to varied P and Zn applications. A pot experiment was conducted using two mycorrhizal crops (maize and soybean) and one non-mycorrhizal crop (oilseed rape) under three levels of P, two levels of Zn, and two levels of benomyl. Results showed that P application significantly decreased shoot and root Zn concentrations, Zn uptake, and Zn acquisition efficiency (ZnAE) of the three crops irrespective of Zn rate, and that these reductions were greater for maize and soybean than for oilseed rape. Zn application alleviated the P inhibition of Zn uptake in the three crops. The arbuscular mycorrhizal fungi (AMF) colonization of maize and soybean contributed most to the negative effects of increasing P application on Zn uptake, explaining 79–89 and 64–69% of the effect, respectively. For oilseed rape, root dry weight and root Zn concentration explained 90% of the decrease in Zn uptake caused by P application. These results suggest that there is another pathway in addition to the mycorrhizal pathway regulating Zn uptake under mediation by P supply.


1998 ◽  
Vol 80 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Nicola M. Lowe ◽  
Leslie R. Woodhouse ◽  
Janet C. King

The physiological importance and mechanism of the postprandial fall in plasma Zn concentration is not well understood. In order to gain further information on this apparent redistribution of plasma Zn, a stable isotope, 70Zn, was used to study the effect of a breakfast meal on plasma Zn kinetics. Nine women participated in two trials, a fasting trial and a breakfast-meal trial; five of the women participated in a third trial in which the energy content of the breakfast meal was doubled. At each trial, 0.1mg of 70Zn was infused intravenously, and the plasma disappearance of the isotope was analysed using a two-compartment model of Zn kinetics. Plasma Zn concentration fell significantly following the two trials in which the subjects were given meals, reaching low points that were 13 and 19 %, respectively, below concentrations at comparable times during the fasting trial. Kinetic analysis revealed that after the doubled breakfast meal there was a significant fall (P < 0.007) in the size of the most rapidly turning over Zn pool (pool (a)) from 2.90 (se 0.13)mg in the fasting state to 2.47 (se 0.14) mg postprandially. The fractional turnover rate of pool (a) to other extravascular Zn pools, i.e. outside the two-compartment system, was also significantly elevated after the doubled breakfast meal (P < 0.05). These results suggest that the decline in plasma Zn concentration following a meal is due to a redistribution of Zn from the plasma to other more slowly turning over extravascular pools that may be involved in the assimilation and metabolism of fuels following food intake.


1990 ◽  
Vol 30 (4) ◽  
pp. 557 ◽  
Author(s):  
JD Armour ◽  
AD Robson ◽  
GSP Ritchie

Navy beans (Phaseolus vulgaris cv. Gallaroy) were grown with 7 rates of zinc (Zn) in a Zn-deficient gravelly sandy loam in a glasshouse experiment. The plant shoots were harvested 31 days after sowing and the Zn concentration in each of 4 plant parts (YL, young leaf; YOL, young open leaf; YFEL, youngest fully expanded leaf; and whole shoots) was related to the fresh weight of the shoots. The critical Zn concentrations (mgtkg) in the plant parts determined by the 2 intersecting straight lines model were 21.1 for YL (r2 = 0.66), 17.1 for YOL (r2 = 0.83), 10.6 for YFEL (r2 = 0.91) and 12.5 for the whole tops (r2 = 0.88). The YFEL was selected as an appropriate diagnostic tissue because it is readily identifiable in the field and had the highest 1.2 with fresh weight. In a second glasshouse experiment, the critical Zn concentration in the YFEL and 5 soil tests were evaluated for their ability to predict the Zn status of navy beans. There were 13 soils from sands to clays with a wide range of chemical properties. The soil tests were 0.1 mol/L HCl, DTPA, EDTA, dilute CaCl2 and soil solution Zn. The concentration of Zn in the YFEL correctly predicted Zn deficiency or adequacy in about 77% of samples. The results from both experiments showed that a critical Zn concentration of 10-11 mg/kg in the YFEL can be used to diagnose the Zn status of Gallaroy navy beans. It was not possible to recommend a single soil test for prediction of the relative yield of navy beans. A combination of quantity (HCl, EDTA, DTPA) and intensity (soil solution, 0.002 mol/L CaCl2, 0.01 mol/L CaCl2) parameters were able to explain most of the variation in the Zn concentration of the YFEL, a more sensitive measure of nutrient availability than relative yield. EDTA-Zn in combination with 0.01 mol/L CaCl2-Zn explained 90% of the variation in the Zn concentration in the YFEL, while HCl- or DTPA-Zn and 0.01 mol/L CaCl2 explained about 80% of the variation. As soil solution Zn was significantly correlated with 0.002 and 0.01 mol/L CaCl2-Zn (r = 0.75, P<0.01; r = 0.62, P<0.05, respectively), CaCl2-Zn may be used as a more convenient measure of Zn intensity than soil solution Zn.


1990 ◽  
Vol 63 (3) ◽  
pp. 597-611 ◽  
Author(s):  
Pamela M. Manson ◽  
Patricia A. Judd ◽  
Susan J. Fairweather-Tait ◽  
John Eagles ◽  
Margret J. Minski

Fifteen adult women were given diets in which the intake of complex carbohydrates was increased from 20 to 30 g over a 12 week period. Metabolic balances were carried out, iron and zinc absorption tests performed using stable isotopes, and Fe and Zn status monitored. Although effects on bowel function were observed, the changed diet had no influence on any of the previously described variables. It was concluded that a moderate increase in cereals, fruit and vegetables did not have an adverse effect on Fe or Zn nutrition.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 450 ◽  
Author(s):  
Hamideh Fatemi ◽  
Chokri Zaghdoud ◽  
Pedro A. Nortes ◽  
Micaela Carvajal ◽  
Maria del Carmen Martínez-Ballesta

Zinc (Zn) is considered an essential element with beneficial effects on plant cells; however, as a heavy metal, it may induce adverse effects on plants if its concentration exceeds a threshold. In this work, the effects of short-term and prolonged application of low (25 µM) and high (500 µM) Zn concentrations on pak choi (Brassica rapa L.) plants were evaluated. For this, two experiments were conducted. In the first, the effects of short-term (15 h) and partial foliar application were evaluated, and in the second a long-term (15 day) foliar application was applied. The results indicate that at short-term, Zn may induce a rapid hydraulic signal from the sprayed leaves to the roots, leading to changes in root hydraulic conductance but without effects on the whole-leaf gas exchange parameters. Root accumulation of Zn may prevent leaf damage. The role of different root and leaf aquaporin isoforms in the mediation of this signal is discussed, since significant variations in PIP1 and PIP2 gene expression were observed. In the second experiment, low Zn concentration had a beneficial effect on plant growth and specific aquaporin isoforms were differentially regulated at the transcriptional level in the roots. By contrast, the high Zn concentration had a detrimental effect on growth, with reductions in the root hydraulic conductance, leaf photosynthesis rate and Ca2+ uptake in the roots. The abundance of the PIP1 isoforms was significantly increased during this response. Therefore, a 25 µM Zn dose resulted in a positive effect in pak choi growth through an increased root hydraulic conductance.


1966 ◽  
Vol 12 (6) ◽  
pp. 1137-1143
Author(s):  
R. Ghys ◽  
B. Gözsy ◽  
L. Kátó

A limited multiplication of Mycobacterium leprae murium occurred in an alkaline galactomannan medium. Multiplication was enhanced by parabiosis with Torula minuta cells. 59Fe uptake was proportional to the rate of multiplication and dependent on the pH and NaCl concentration as well as on the amount of Fe in the medium; however, 65Zn uptake is independent of Zn concentration up to a concentration of 10 mg Zn/l. Glucose (14C1, 14C6), asparagine, glycerol, and histamine were not adsorbed by the bacilli in significant amounts. The authors discuss the usefulness of measurements of 59Fe uptake for studies of the nutrients that can be used by this noncultivable microorganism, and those that are essential for its multiplication.


Sign in / Sign up

Export Citation Format

Share Document