Tropical forage legumes provide large nitrogen benefits to maize except when fodder is removed

2018 ◽  
Vol 69 (2) ◽  
pp. 183 ◽  
Author(s):  
Skye Traill ◽  
Lindsay W. Bell ◽  
Neal P. Dalgliesh ◽  
Ainsleigh Wilson ◽  
Lina-May Ramony ◽  
...  

Integration of tropical forage legumes into cropping systems may improve subsequent crop nitrogen (N) supply, but removal of legume biomass for forage is likely to diminish these benefits. This study aimed to determine: (i) under irrigated conditions, the potential N inputs that can be provided by different tropical forage legumes to a subsequent cereal crop; and (ii) the residual N benefits once fodder had been removed. Available soil mineral N following tropical forage legumes lablab (Lablab purpureus), centro (Centrosema pascuorum), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum) and grain legume soybean (Glycine max) was compared with a maize (Zea mays) control when legume biomass was retained or cut and removed (phase 1). An oat (Avena sativa) cover crop was then grown to ensure consistent soil-water across treatments (phase 2), followed by a maize grain crop (phase 3) in which N uptake, biomass production and grain yield were compared among the phase 1 treatments. To determine N-fertiliser equivalence values for subsequent maize crop yields, different rates of fertiliser (0–150 kg urea-N/ha) were applied in phase 3. Retained biomass of butterfly pea, centro and lablab increased phase 3 unfertilised maize grain yield by 6–8 t/ha and N uptake by 95–200 kg N/ha compared with a previous cereal crop, contributing the equivalent of 100–150 kg urea-N/ha. When legume biomass was cut and removed, grain yield in the phase 3 maize crop did not increase significantly. When butterfly pea, centro and lablab biomass was retained rather than removed, the maize accumulated an additional 80–132 kg N/ha. After fodder removal, centro was the only legume that provided N benefits to the phase 3 maize crop (equivalent of 33 kg urea-N/ha). Burgundy bean did not increase subsequent crop production when biomass was either retained or removed. The study found that a range of tropical forage legumes could contribute large amounts of N to subsequent crops, potentially tripling maize grain yield. However, when these legumes were cut and removed, the benefits were greatly diminished and the legumes provided little residual N benefit to a subsequent crop. Given the large N trade-offs between retaining and removing legume biomass, quantification of N inputs under livestock grazing or when greater residual biomass is retained may provide an alternative to achieving dual soil N–fodder benefits.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


Author(s):  
Francisco H. R. Costa ◽  
Geovana F. Goes ◽  
Murilo de S. Almeida ◽  
Clarissa L. Magalhães ◽  
José T. M. de Sousa ◽  
...  

ABSTRACT Irrigation with saline water affects the agronomic performance of the maize crop; however, the use of vegetal mulch may mitigate salt stress and promote an increase in yield. In this way, this study aimed to evaluate the grain yield of the maize plants submitted to different water salinity levels in the presence and absence of mulch. The experiment was conducted in a randomized block design arranged in a 2 × 2 factorial scheme. The first factor was the salinity of the irrigation water (1.0 and 4.0 dS m-1) and the second, with and without mulch, and five replicates. The variables analyzed were: unhusked ear mass, husked ear mass, cob mass, straw mass, husked ear diameter, husked ear length, and yield. The irrigation water with higher electrical conductivity affects negatively the ear mass with and without straw, ear diameter and ear length. The use of vegetation cover on the soil increased the unhusked ear mass with and without straw, ear diameter and length. The water with higher salinity (4.0 dS m-1) reduces the maize grain yield but with less intensity in the presence of mulch.


2009 ◽  
Vol 55 (No. 12) ◽  
pp. 519-527 ◽  
Author(s):  
J. Potarzycki ◽  
W. Grzebisz

Actual yields of maize harvested by farmers are at level much below attainable yield potential of currently cultivated varieties. Among many growth factors zinc was recognized as one of main limiting factors of maize crop growth and yielding. This hypothesis has been verified within a three-year field study, where zinc fertilizer was applied to maize plants at the 5<sup>th</sup> leaf stage. Maize crop responded significantly to zinc foliar application in two of three years of study. The optimal rate of zinc foliar spray for achieving significant grain yield response was in the range from 1.0 to 1.5 kg Zn/ha. Grain yield increase was circa 18% (mean of three years) as compared to the treatment fertilized only with NPK. Plants fertilized with 1.0 kg Zn/ha significantly increased both total N uptake and grain yield. Yield forming effect of zinc fertilizer revealed via improvement of yield structure elements. The number of kernels per plant showed the highest response (+17.8% as compared to the NPK plot) and simultaneously the highest dependence on N uptake (<i>R</i><sup>2</sup> = 0.79). For this particular zinc treatment, however, the length of cob can also be applied as a component of yield structure significantly shaping the final grain yield.


2020 ◽  
Author(s):  
Bharat Prakash Meena ◽  
Pramod Jha ◽  
K. Ramesh ◽  
A.K. Biswas ◽  
R. Elanchezhian ◽  
...  

AbstractConventionally, non-judicious and blanket fertilizer nitrogen (N) used in rainfed maize lead to higher N losses, low N use efficiency (NUEs) and poor yields due to substandard agronomic management practices. To avoid such N losses, fertilizer additions are synchronized with plant uptake requirements. In this context, agronomic based management focused on optimizing N rates and biochar application is essential for improved NUEs and crop productivity. Keeping this in view, a field experiment was conducted during 2014, 2015 and 2016 in rainfed maize (Zea mays L.) grown in Vertisols of India. In this study, twelve treatments that comprised of N omission plot (N0), skipping of basal rate, multi-split topdressing at varying time as broadcast and band placement, soil test crop response (STCR) based NPK with target yield 6.0 t ha-1 in maize and biochar application (10 t ha−1) were investigated. The experiment was conducted following a Randomized Complete Block Design (RCBD) set up with three replications. Pooled analysis of three years data revealed that the application of N rates (120 kg Nha−1) in 2 equal splits (60 kg Nha−1) at knee high (V8) and tasseling (VT) stages with skipped basal N rate, achieved higher maize grain yield (5.29 t ha−1) ascribed to the greater growth parameters, yield components and N uptake compared to the recommended practices. Biochar application (10 t ha−1) as soil amendments along with multi top dressed N (120 kg N ha−1) into 3 splits also increased the grain yield. Delayed N application at V8 and VT growth stages, resulted in higher N uptake, agronomy efficiency (AE), partial factor productivity (PFP), physiology efficiency (PE) and recovery efficiency (RE). Biochar along with N fertilizer also improved the soil organic carbon (5.47g kg−1), ammonium-N (2.40 mg kg−1) and nitrate-N (0.52 mg kg−1) concentration in soil (P<0.05) as compared to non-biochar treatments. Application of biochar along with chemical fertilizer (120 kg Nha−1) significantly increased the concentration of ammonium (2.40 mg kg−1) and nitrate (0.52 mg kg−1) in soil (P<0.05) as compared to non-biochar treatments. The perfect positive linear relationship illustrated that the grain yield of rainfed maize was highly dependent (R2=0.99 at p<0.0001) on N availability, as indicated by the fitted regression line of maize grain yield on N uptake. On the other hand, factor analysis revealed, the one to one positive function relationship of biomass with N uptake at V8 and VT growth stages. Principal Component Regression (PCR) analysis showed that PC1 acted as a major predictor variable for total dry matter yield (TDMY) and dominated by LAI and N uptake. Consequently, these results expressed that the agronomic management based multi-top dressed N application and biochar application to achieve higher yield and greater NUEs in rainfed maize is strongly linked with N application into splits.


Author(s):  
Bruno Borges Deminicis ◽  
Henrique Duarte Vieira ◽  
João Carlos de Carvalho Almeida ◽  
Tiago Neves Pereira Valente ◽  
Saulo Alberto do Carmo Araújo ◽  
...  

This experiment was conducted to evaluate the recovery and survival of tropical forage legume seeds (butterfly pea, stylosanthes, perennial soybean and macrotiloma) subjected through the digestive tract of cattle and to evaluate the germination of the seeds in feces of cattle. A 50 g of seed mixed with 150 g of mineral supplement offered to the cattle. Each cattle was considered as repetition. The bovine feces collected up to 60 hours after eating the seeds, where the seeds separated by sieves, using water, gloves procedure and tweezers. Later, they counted and divided into intact and swollen. For the germination test of the recovered seeds, 75 seeds per replicate were used (25 in natura, 25 intact and 25 swollen seeds, respectively). For the germination test in fecal plates, the bovine feces collected between 12 and 30 hours after eating the seeds. After 120 days, we evaluated the total amount of plants emerged within the study period (between 12 and 30 hours) and the average number of emerged plants per fecal signs. The results showed that cattle are facilitating the dispersion of butterfly pea, macrotyloma and perennial soybean, but not stylosanthes. The highest survival as the average number of germinated plants in fecal plates achieved by macrotyloma, followed by butterfly pea species and perennial soybean. The cattle were efficient in the pasture colonization process, due to the considerable dispersion of the seeds. This dispersion was not observed for seeds of stylosanthes.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 324 ◽  
Author(s):  
Pengxiang Sui ◽  
Ping Tian ◽  
Hongli Lian ◽  
Zhengyu Wang ◽  
Ziqi Ma ◽  
...  

Returning crop straw to soil can potentially improve soil health and crop production, facilitating sustainable agriculture. However, the effects of straw incorporation with various tillage management techniques combined with nitrogen (N) regimes on crop root growth, and water and N utility are not well understood. In this study, rotary tillage (RTS) and plow tillage (PTS) for straw incorporation combined with N regimes (CK, no N applied; LN, 112 kg N ha−1; MN, 187 kg N ha−1; and HN, 262 kg N ha−1) were used to determine their effects on soil water and mineral N availability, root distribution, crop N uptake, grain yield, and water use efficiency (WUE) of maize in northeast China. The results demonstrate that higher levels of pre-sowing soil-water storage and field evapotranspiration (ET), and lower levels of WUE and pre-sowing soil mineral N storage (Nmin-PS) at a depth of 0–60 cm were obtained with the RTS treatments as compared to the PTS treatments. N addition improved Nmin-PS and post-harvest soil mineral N storage (Nmin-PH) at a depth of 60–100 cm in 2016, and increased WUE compared to CK. RTS treatments enhanced root weight density (RWD) at a depth of 0–60 cm in 2016–2017, root length density (RLD), ratio of root length density (RLDR), and ratio of root weight density (RWDR) at a depth of 30–60 cm in 2016, and RLD at a depth of 0–30 cm in 2017. N addition promoted RLD and RWD at a depth of 0–10 cm in 2016–2017. RTS treatments reduced pre-silking shoot N uptake (NPS) and grain yield. Shoot N uptake and grain yield were enhanced in response to increasing levels of N; however, the grain yield did not show further significant improvements when the amount of N applied was over 187 kg N ha−1 (except for RTS in 2016). Overall, tillage with straw incorporation management and N levels markedly affected the soil physicochemical properties (such as ET, Nmin-PS, and Nmin-PH). This influenced grain yield indirectly by further mediating root traits (RLD, RWD, RLDR, and RWDR) with consequences for the NPS and post-silking shoot N uptake (NPOS) of maize, which were found to have greatest direct and positive impact on maize grain yield.


2016 ◽  
Vol 9 (1) ◽  
pp. 85 ◽  
Author(s):  
Adilson Nunes da Silva ◽  
Evandro Luiz Schoninger ◽  
Paulo Cesar Ocheuze Trivelin ◽  
Durval Dourado-Neto ◽  
Victor Meriguetti Pinto ◽  
...  

<p>The main factors determining plant growth and productivity are decisive to be understood since they<strong> </strong>contribute to maximize plant nitrogen use efficiency. Thus, more reviews related to the correlation between the real content of chlorophyll and real carotenoids with the values obtained by chlorophyll (SPAD) in the early development stages of the maize are important to be obtained. The relation between the maize crop responses to the nitrogen fertilization at different development stages is of fundamental importance as well. The primary objective of this study was to investigate the responses of maize to the nitrogen application, urea fertilizer (<sup>15</sup>N), in side-dress at different development stages. The secondary objective was verifying the correlation between chlorophylls and carotenoids with SPAD index and these with total biomass (BM), harvest index (HI), grain yield (GY) and grain N content in response to the nitrogen side-dress at different development stages. The nitrogen fertilization was carried out in plots, with the application of 30 kg ha<sup>-1</sup> of N at planting and 140 kg ha<sup>-1</sup> N as side-dress at vegetative stages V4, V6, V8, V10, and V12, without incorporation into the soil, and control treatment consisted of non-nitrogen side-dress application was also utilized. The 2011/2012 season presented higher precipitation than 2012/2013. Maize crop responded similarly for GY to the nitrogen application in side-dress in both seasons, however, the nitrogen application in the early stages caused higher values for leaf variables, leaf pigments, and SPAD. Higher amount of nitrogen in all parts of the plants was observed in the 2011/2012 season than in 2012/2013, influenced by the adequate weather conditions at the nitrogen application moment. Grain N content from <sup>15</sup>N fertilizer and N uptake and efficiency were greater for early N applications. SPAD values correlated positively with most pigment variables at V16 in both seasons, thus proving that SPAD was an efficient instrument of indirect evaluation of chlorophylls and carotenoids in maize leaves at early stages. Chlorophyll b at V16 was positively correlated (P &lt; 0.05) with grain N content, GY, and BM, and total chlorophyll at V16 was positively correlated with GY and grain N content. However the chlorophylls a and total, evaluated at V14, were negatively correlated with GY. So, measurement of real chlorophyll and carotenoid pigment contents should be done after V14 stage when studies aim to evaluate crop nutritional conditions and prescribe future grain production practices.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maggie G. Munthali ◽  
Charles K. K. Gachene ◽  
Gudeta W. Sileshi ◽  
Nancy K. Karanja

Maize production in Malawi is limited mainly by low soil N and P. Improved fallows of N-fixing legumes such asTephrosiaandSesbaniaoffer options for improving soil fertility particularly N supply. The interactions ofTephrosiafallows and inorganic fertilizers on soil properties, N uptake, and maize yields were evaluated at Chitedze Research Station in Malawi. The results indicated that the level of organic matter and pH increased in all the treatments except for the control. Total N remained almost unchanged while available P decreased in all plots amended withT. vogeliibut increased inT. candidaplots where inorganic P was applied. Exchangeable K increased in all the plots irrespective of the type of amendment. The interaction of N and P fertilizers withT. vogeliifallows significantly increased the grain yield. The treatment that received 45 kg N ha−1and 20 kg P ha−1produced significantly higher grain yields (6.8 t ha−1) than all the other treatments except where 68 kg N ha−1and 30 kg P ha−1were applied which gave 6.5 t ha−1of maize grain.T. candidafallows alone or in combination with N and P fertilizers did not significantly affect grain yield. However,T. candidafallows alone can raise maize grain yield by 300% over the no-input control. Based on these results we conclude that high quality residues such asT. candidaandT. vogeliican be used as sources of nutrients to improve crop yields and soil fertility in N-limited soils. However, inorganic P fertilizer is needed due to the low soil available P levels.


Sign in / Sign up

Export Citation Format

Share Document