A survey on the effect of management techniques and pasture composition and quality at harvesting on silage quality on dairy farms in western Victoria

1998 ◽  
Vol 38 (2) ◽  
pp. 139 ◽  
Author(s):  
J. L. Jacobs

Summary. Factors associated with silage quality were investigated on 140 dairy farms in western Victoria. The management factors measured were date of lock up, date cut, length of lock up, duration of wilting, raking and tedding during wilting period, rainfall during wilting period and the type of silage made. Pasture variables measured at harvesting included percentage composition (ryegrass, legume, other grasses and weeds), dry matter of pasture, metabolisable energy, crude protein, neutral detergent fibre and water-soluble carbohydrate of the pasture, and dry matter yield of the pasture. The average lock up time of pasture for silage was mid September, although the range was from late July to early November. The length of lock up varied from 16 to 91 days with a mean value of 49 days and pastures were on average harvested in early November. Ryegrass on average accounted for 61%, legumes and other grasses accounting for a further 15% each and weeds about 5%. The range in quality of pasture at harvesting was highlighted by the range in metabolisable energy (8.9–11.3 MJ/kg DM) and crude protein (10.2–20.4%) values. Wilting times varied from 0.5 to 15 days with the biggest range being observed in pastures used for baled silage. All factors were regressed against final silage metabolisable energy and crude protein. Factors which had the greatest effect on final silage metabolisable energy were date of cutting, length of lock up, type of silage, the interaction between type of silage and length of lock up, length of wilting and mechanical treatment during the wilting period. Final silage crude protein was most strongly associated with date of cutting, crude protein content of the pasture and mechanical treatment during the wilting period. Mechanical treatment during the wilting period had the greatest influence on silage quality. Other options to improve silage quality such as cutting earlier or reducing wilting periods may not be possible or economically viable.

1998 ◽  
Vol 38 (3) ◽  
pp. 219 ◽  
Author(s):  
J. L. Jacobs ◽  
F. R. McKenzie ◽  
S. E. Rigby ◽  
G. Kearney

Summary. This study aimed to define the effect of differing rates of nitrogen application and lock up length on harvested material for silage in south-western Victoria. At 2 sites in south-western Victoria, 140, 3 by 2 m plots of predominantly perennial ryegrass pasture were randomly allocated, within 4 replicate blocks. Five nitrogen fertiliser rates (0, 25, 50, 75, 100 kg N/ha) in combination with 7 lock up lengths were randomly allocated to the 35 plots within each replicate. Nitrogen was applied 1 week after initial lock up (September 10, site 1; September 12, site 2) and harvesting commenced 3 weeks after initial lock up. For each treatment and harvest date, dry matter yield and botanical composition were determined and samples of total pasture and the ryegrass fraction were collected and chemically analysed for dry matter digestibility, crude protein, neutral detergent fibre, water-soluble carbohydrates and mineral content. Metabolisable energy was derived from dry matter digestibility. Increasing rates of nitrogen increased herbage dry matter yield regardless of length of lock up. The yield response was greatest 8 weeks after initial lock up at both sites (site 1, 26 kg DM/kg N; site 2, 14.9 kg DM/kg N). Subsequent regrowth of pasture was increased by nitrogen application over shorter lock up lengths (weeks 3 and 4). Botanical composition was unaffected by treatment during the harvesting period or in the subsequent autumn. Application of nitrogen gave rise to a linear increase in pasture metabolisable energy and crude protein content at both sites until week 5. Thereafter, this response diminished and by week 8 there was a decrease in metabolisable energy and crude protein content. Neutral detergent fibre content was relatively unaffected by nitrogen application until week 8 of the study, at which point there was a linear increase. Application of nitrogen reduced the water-soluble carbohydrate content of pastures throughout the sampling period. It is concluded that application of nitrogen to a mixed sward locked up for silage can increase dry matter yield and, provided pasture is harvested before ryegrass ear emergence, can also have a positive effect on metabolisable energy and crude protein. Given that the decision for removing paddocks from the grazing rotation is based upon pasture growth and stocking rates, the use of nitrogen fertilisers on higher stocked farms could lead to increased dry matter yield over shorter lock up periods. On farms with lower stocking rates shorter lock up periods may allow for pastures to be returned to the grazing rotation earlier, or provide the opportunity for a second harvest of pasture for silage.


1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.


2001 ◽  
Vol 41 (6) ◽  
pp. 743 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward ◽  
A. M. McDowell ◽  
G. A. Kearney

Factors associated with turnip dry matter yield, metabolisable energy and crude protein were investigated in 266 turnip forage crops on 142 dairy farms in south-western Victoria during spring 1999 and summer 2000. Factors measured were primary cultivation method, secondary cultivation method, soil texture, soil temperature and moisture at sowing, seedbed preparation, turnip variety, sowing method, sowing rate, rolling post-sowing, harrowing post-sowing, seedling establishment, insect damage, water received, phosphorus and nitrogen application. The average date for the commencement of seedbed preparation was early October, although the range was from mid-March until mid-December. Sowing dates ranged from mid-September to mid-December, with an average of mid-October. The most common turnip variety sown was Barkant, followed by Mammoth Purple Top, Vollenda and Rondo. Growing periods ranged from 8 to 23 weeks, with the majority of crops grazed from 8 to 15 weeks. The average dry matter yield was about 5 t DM/ha, with values ranging from 0.4 to 19.2 t DM/ha. The average metabolisable energy content of turnips was 13.7 MJ/kg DM with values ranging from 11.3 to 14.6 MJ/kg DM. The metabolisable energy of roots was on average higher than the leaf component of the plants (14 v. 13.5 MJ/kg DM). Conversely, crude protein content of leaves (15.4%) was higher than in the root fraction (13.9%). The average neutral detergent fibre content of turnips was 22.5% with values ranging from 16.9 to 30.5%. The water-soluble carbohydrate content of the leaf component ranged from 1.1 to 26.8% with an average of 14.7%, while starch content of the root component ranged from 0.3 to 38.8% with an average content of 16.9%. The average cost of growing a turnip crop was $485/ha or $133 t DM. Total, leaf and root dry matter yield as well as metabolisable energy and crude protein were analysed by a mixed effects model (with factors fixed and farms and paddocks random). Factors that were associated with total dry matter yield were total water received, soil temperature and moisture at sowing, seedling density, method of secondary cultivation, soil type and insect damage. The application of nitrogen fertiliser had the greatest association with turnip crude protein content. In conclusion the findings of this study indicate potential ways to increase the dry matter yield of turnips grown in south-western Victoria. Given the current average dry matter yields and cost of growing turnips, purchasing cereal grain may be a viable alternative. An increase in average dry matter yield would make the choice of growing turnips as a feed for lactating dairy cows a more profitable option.


2001 ◽  
Vol 41 (1) ◽  
pp. 45 ◽  
Author(s):  
J. L. Jacobs ◽  
F. R. McKenzie ◽  
G. N. Ward ◽  
G. Kearney

A study in south-western Victoria determined effects of 3 perennial ryegrass (Lolium perenne L.) cultivars (Vedette, Impact and Nevis) with differing maturities, duration of lock up and nitrogen (N) application on the dry matter yield and nutritive characteristics of pasture for silage. Treatments were cultivar (3), N (0 and 50 kg N/ha) and duration of lock up (5–10 weeks) arranged in a completely randomised design in 3 by 5 m plots replicated 3 times. Plots were mown to a uniform height (5 cm) on 14 September 1998 (first day of lock up) and 1 week later N was applied as urea (46% N) at either 0 or 50 kg N/ha to the respective plots. Weekly sampling commenced on 19 October (week 5 of lock up), and continued until 23 November. For each treatment and harvest date, dry matter yield and botanical composition were determined, and samples of total pasture and the ryegrass fraction were collected and chemically analysed for dry matter digestibility, concentrations of crude protein, neutral detergent fibre, water-soluble carbohydrates and minerals. Metabolisable energy was derived from dry matter digestibility. All pasture types were predominantly ryegrass (>90%) with no differences in the nutritive characteristics of total pasture swards or the respective ryegrass fraction. Nitrogen at 50 kg N/ha significantly (P<0.05) increased dry matter yield for all cultivars. Metabolisable energy (MJ/kg DM) of the pasture declined with time for all treatments, with Vedette having a significantly (P<0.05) greater rate of decline than the other cultivars. Vedette reached early ear emergence about 3 weeks earlier (week 7) than the other cultivars. The harvestable metabolisable energy yield (MJ/ha) at ear emergence was highest for Impact, followed by Nevis and Vedette. In conclusion, there is potential to use later-maturing cultivars of ryegrass in south-eastern Australia to allow for later harvesting of forage for silage, while maintaining metabolisable energy and maximising dry matter yields. Furthermore, the use of N fertiliser can also increase dry matter yields without impinging on pasture quality provided the time between N application and harvest date does not exceed 5–6 weeks.


2002 ◽  
Vol 42 (5) ◽  
pp. 541 ◽  
Author(s):  
J. L. Jacobs ◽  
F. R. McKenzie ◽  
G. A. Kearney

A study determined the effects of differing rates of nitrogen fertiliser [0 (N0), 25 (N1), 50 (N2) and 75�kg N/ha (N3)] during late autumn (T1) and mid- (T2) and late (T3) winter on the nutritive characteristics of perennial ryegrass over a 28-day period after each application. All nitrogen applications were made to pastures with a post-grazed residual mass (dry matter) of 1400 kg/ha. Changes in metabolisable energy followed similar patterns for all treatments within a given period. Metabolisable energy was highest in T1, ranging from 11.8 to 13.1 MJ/kg dry matter, followed by T2 (11.5-12.3 MJ/kg dry matter) and T3 (10.6-11.5 MJ/kg dry matter). Changes in crude protein for all treatments at each application time were similar, irrespective of rate of nitrogen application. At the commencement of treatment application times, the existing crude protein content (%DM) was highest in N3 (T1�19, T2 23, T3 22), followed by N2 (T1 18, T2 21, T3 21), N1 (T1 17, T2 20, T3 20) and N0 (T1 16, T2 17, T3 18). During both T1 and T2, neutral detergent fibre content decreased by 4 percentage units and increased by a similar amount during T3. Generally, neutral detergent fibre content (%DM) was highest during T3 (53-58%), followed by T2 (45-54%) and T1 (43-49%). Water-soluble carbohydrate content (%DM) increased during all treatment periods with the highest level observed during T1 (18-31%) followed by T2 (3-14%) and T3 (1-6%). Nitrate content (measured as nitrate-nitrogen) decreased throughout T1, primarily due to dry conditions, while during T2, levels for N3 and N2 were significantly (P<0.05) higher than for N1 and N0 following nitrogen fertiliser application. During T3, nitrate content increased for all treatments throughout the 28-day period, with highest nitrate levels being observed during T3. The effect of applied nitrogen on mineral content was variable within and across treatment periods. The study indicates that nitrogen fertiliser did not affect metabolisable (apart from N3 elevating metabolisable energy during T3), neutral detergent fibre or water-soluble carbohydrate contents of perennial ryegrass during the 28 days after nitrogen application, but increased crude protein content. Also, nitrogen fertiliser elevated nitrate content in perennial ryegrass. While the elevated nitrate content observed may result in subclinical effects, these levels are not considered fatal for dairy cows. Crude protein content was generally above 20% of dry matter throughout the study and close to 30% of dry matter for short periods during T2. Minimising the effect of excess nitrogen ingested by the grazing animal may require appropriate supplementation of low crude protein containing feeds such as cereal grains. It is argued that the effects of rain and temperature, which impact on soil nitrogen mineralisation, may have a greater influence on perennial ryegrass nitrate content than nitrogen fertiliser.


2002 ◽  
Vol 138 (3) ◽  
pp. 311-315 ◽  
Author(s):  
A. GHANBARI-BONJAR ◽  
H. C. LEE

Sole crops and intercrops of field beans (Vicia faba L.) and wheat (Triticum aestivum L.), at three nitrogen rates, were evaluated for production of whole crop forage in two field experiments, one spring and one autumn drilled, on Imperial College at Wye farm, UK, during 1997–1998. Forage quality attributes measured were crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), water-soluble carbohydrate (WSC) and ash content. In both experiments, dry matter (DM) and percentage dry matter (DM%) were improved by intercropping compared with beans sole crops. Intercropping enhanced CP and NDF contents and WSC compared with beans and wheat sole crops, respectively. Nitrogen (N) applications up to 75 kg/ha produced the optimal intercrop forage yield and crude protein content. This input of N is smaller than that for other forage crops.


1998 ◽  
Vol 38 (8) ◽  
pp. 821 ◽  
Author(s):  
K. F. Smith ◽  
R. J. Simpson ◽  
R. N. Oram ◽  
K. F. Lowe ◽  
K. B. Kelly ◽  
...  

Summary. Two lines of perennial ryegrass (Lolium perenne L.), cv. Aurora and breeding line Ba 11351, from the United Kingdom with elevated concentrations of water-soluble carbohydrates in the shoot were compared with the standard cultivars, Ellett, Vedette and Kangaroo Valley, in pure grass swards under irrigation at Kyabram, Victoria, and Gatton, Queensland, and under natural rainfall at Condah, Victoria, during 1995–97. Near infrared reflectance spectroscopy was used to predict the water-soluble carbohydrate, crude protein, in vitro dry matter digestibility, neutral and acid detergent fibre, and Klason lignin concentrations of the perennial ryegrass herbage. Herbage yield and water-soluble carbohydrate differed between cultivars at each site at most harvests, with the high water-soluble carbohydrate lines usually yielding less and having higher water-soluble carbohydrate concentrations than the 3 standard cultivars. However, the high water-soluble carbohydrate lines also had higher water-soluble carbohydrate concentrations at harvests where their yield was equal to the standard cultivars. The other nutritive value traits differed significantly at more than half of the 32 harvests: the high water-soluble carbohydrate lines had higher crude protein and dry matter digestibility, and lower neutral detergent fibre, the neutral detergent fibre containing less acid detergent fibre and lignin than did the standard cultivars. The high water-soluble carbohydrate lines were more susceptible to crown rust during spring and summer than the standard cultivars at Kyabram and Gatton: heavy infections reduced yield, water-soluble carbohydrate, dry matter digestibility and crude protein. Higher water-soluble carbohydrate may depend on only a few genes, as does rust resistance and it seems likely that high yielding, high water-soluble carbohydrate cultivars can be developed by recombination and selection.


1981 ◽  
Vol 61 (3) ◽  
pp. 669-680 ◽  
Author(s):  
J. G. BUCHANAN-SMITH ◽  
Y. T. YAO

A silage additive containing lactic acid bacteria was tested for its effect upon preservation of corn silage, 35–40% dry matter (DM), in four pairs of upright silos (100-t capacity). The additive did not affect (P > 0.05) final pH, lactic or acetic acid concentration, crude protein or NPN-N and NH4+-N expressed as a percent of total N. Recovery of energy from treated silage was greater than control in the two pairs of silos where this was determined, but recoveries of dry matter and crude protein were not consistently affected. Two silage additives, containing hydrolytic enzymes and an antioxidant with or without lactic acid bacteria, were tested on alfalfa, 20, 30, 36.5 and 47.3% DM, in 250-mL laboratory silos. The experimental design used a4 (DM level) × 4 (added glucose — 0,4,8 and 12%, DM basis) × 3 (additive — control, a hydrolytic enzyme/antioxidant additive (E/AO), and E/AO plus lactic acid bacteria (E/AO +)) factorial arrangement of treatments. Alfalfa was harvested using farm equipment. For 60-day silage, the additives as either a primary factor in the design or in second-order interactions with either silage DM or glucose showed no effect (P > 0.05) upon pH, lactic acid, acetic acid, butyric acid, Fleig score, residual water-soluble carbohydrate and percent of total N as NPN-N or ammonia-N. Poor quality silage resulted from the fermentation of alfalfa at 20 and 30% DM, and although additional glucose resolved this problem the additives did not. Beneficial effects of additional water-soluble carbohydrate in alfalfa silage fermentation are evident in data presented. Thus an additive containing an antioxidant and hydrolytic enzymes was not very effective and numbers of lactic acid bacteria in untreated alfalfa harvested with farm equipment must already be sufficient for adequate fermentation.


1972 ◽  
Vol 52 (2) ◽  
pp. 151-156
Author(s):  
D. M. Bowden

Freeze-dried samples from six series of harvests of orchardgrass (Dactylis glomerata L.) and two series of grass–legume mixtures were generally highly digestible with high levels of water-soluble carbohydrate (WSC). When WSC content was held constant, the influence of crude protein (CP) content on dry matter digested in vitro was statistically significant in 6 of the 19 cuts of orchardgrass and 1 of the 15 cuts of grass–legume mixtures. When CP was held constant, the influence of WSC content on dry matter digested in vitro was significant in seven cuts of orchardgrass and seven cuts of grass–legume. CP content had a greater effect than WSC content on dry matter digested in vitro in 10 cuts of orchardgrass and six cuts of grass–legume mixtures. Cumulative effect of CP and WSC content on in vitro dry matter digestion varied between cuts. The potential of CP and WSC content alone or together as predictors of digestibility of the highly digestible forages sampled in this study varied between cuts.


2015 ◽  
Vol 54 (1) ◽  
pp. 31-40 ◽  
Author(s):  
G. A. Burns ◽  
P. O’Kiely ◽  
D. Grogan ◽  
S. Watson ◽  
T. J. Gilliland

Abstract This study examined 169 of the newest varieties of three ryegrass species, perennial (Lolium perenne L.), Italian (Lolium multiflorum Lam.) and hybrid (Lolium boucheanum Kunth), from Recommended List trials in Ireland. The traits examined were yield, dry matter concentration, three nutritive value traits (in vitro dry matter digestibility, water-soluble carbohydrate on a dry matter basis and crude protein concentration) and two ensilability traits (buffering capacity and water soluble carbohydrate concentration on an aqueous phase basis). Varietal monocultures of each species underwent a six cut combined simulated grazing and silage management in each of two years following sowing. Perennial ryegrass yielded less than both other species in one-year-old swards, but less than only Italian ryegrass in two-year-old swards, but generally had the higher in vitro dry matter digestibility and crude protein values. Italian ryegrass displayed the most favourable ensilability characteristics of the three species with perennial ryegrass less favourable and hybrid ryegrass intermediate. Overall, despite the high yields and favourable nutritive value and ensilability traits recorded, the general differences between the three ryegrass species studied were in line with industry expectations. These findings justify assessing the nutritive value and ensilability of ryegrass species, in addition to yield, to allow farmers select species that match farming enterprise requirements.


Sign in / Sign up

Export Citation Format

Share Document