Management practices and other factors contributing to the decline in persistence of grazed lucerne in temperate Australia: a review

1991 ◽  
Vol 31 (5) ◽  
pp. 713 ◽  
Author(s):  
GM Lodge

The literature relevant to the grazing management of lucerne in temperate Australia is reviewed with emphasis on the factors likely to affect its persistence. Knowledge of lucerne physiology is used to question the validity of the traditional methods of managing grazed stands, which rely mainly on using 10% flowering as a guide to root carbohydrate levels. From these data several alternative management guidelines are proposed that may lead to increased persistence; however, for long-term persistence, there is little doubt that lucerne needs to be grazed leniently and at a late stage of maturity. Several grazing experiments indicate that grazing periods of 16-20 days should have no effect on persistence, provided that the rest period between successive grazings is 35 days or longer. Data from other countries and Australian data from a limited number of experiments also indicate that grazing in either autumn or winter may substantially reduce production and could affect persistence. Three grazing studies in New South Wales were used to highlight critical differences in experimental design which make comparisons among experiments difficult. Standardised sowing rates and grazing management, and statistical procedures which account for the genotype x management x environment interaction, are suggested to improve the extrapolation of results from experiments to other environments. Persistence of different lucerne types under grazing, particularly those recently imported from the U.S.A. or bred in Australia, is considered. While it has been proposed that grazing effects may be related to crown structure, interactions with other factors which affect persistence may also occur. If grazing can be considered to be stressful to a lucerne plant then it could interact with other stresses, caused by moisture deficit, excessive moisture, insect pests and disease, to reduce persistence. Additionally, considerable variation in varietal resistance to some pests and diseases has been recorded in haycut stands, and so there may also be cultivar x grazing effects. All of these factors could combine to affect the persistence of a particular cultivar under grazing. Patterns of lucerne decline were either continuous or step-like. Continuous decline was associated with prolonged grazing, grazing and moisture stress, grazing under waterlogged conditions, or grazing in situations where the incidence of disease was likely to be high. To understand the reasons why plants fail to persist, measurements need to be made frequently and a1 regular intervals, and the moisture and disease status of the site needs to be accurately monitored. The adequacy of different methods of measuring stand persistence is also questioned. The implications for graziers, researchers and lucerne breeders are discussed.

1994 ◽  
Vol 9 (4) ◽  
pp. 148-156 ◽  
Author(s):  
Ronald J. Prokopy ◽  
Daniel R. Cooley ◽  
Wesley R. Autio ◽  
William M. Coli

AbstractAs historical background helpful to understanding current concepts and practices of apple pest management, we review the origin and rise of key pests of apple in North America and the evolution of approaches to their management, culminating with the concept of integrated pest management (IPM). We propose four levels of integration of orchard pest management practices. First-level IPM integrates chemically based and biologically based management tactics for a single class of pests, such as arthropods, diseases, weeds or vertebrates. Second-level IPM, the focus of our effort here, integrates multiple management tactics across all classes of pests. We describe components of second-level IPM for Massachusetts apple orchards, which are threatened each year by an exceptionally broad range of injurious pests. We illustrate the tentative advantages and shortcomings of second-level IPM using 1993 data from six commercial orchard test blocks. Our predominant approach was to use chemically based tactics for controlling arthropods, diseases and weeds early in the growing season, and afterwards to rely exclusively (for insects) or largely (for other pests) on biologically based tactics, such as cultural, behavioral, and biological controls. Compared with nearby first-level IPM blocks, insecticide use in 1993 was reduced substantially (about 30%), with only slightly more insect injury to fruit and little difference in populations of foliar insect pests. The results for mite pests and diseases were less encouraging although summer pruning significantly reduced disease injury caused by flyspeck. We discuss how second-level IPM poses special biological or operational challenges to apple pest management practitioners. The concept has merit, but refinements are necessary before it can be recommended broadly to commercial apple growers in Massachusetts as an economical and reliable alternative to first-level IPM.


Author(s):  
M. M. Sebitia ◽  
M. Sekoli ◽  
P. V. Masupha

Protected farming is one of the innovations used by farmers to control pests and climatic conditions and therefore improve yield of vegetables. However, these structures also provide an ideal environment for biotic factors such as insect pests and diseases. In this study, a survey of 60 farmers was conducted to determine the types of vegetables cultivated under protected structures, insect pests and management practices employed by farmers using structured questionnaires. Data was analysed through descriptive statistics using Statistical Package for Social Sciences (SPSS). The results showed that most farmers grew tomato, cabbage, swiss chard, rape and peppers. Farmers considered insect pests as the major constraint to vegetable production. The most important insect pests found infesting farmers’ vegetables were aphids (Aphis gossypii), tomato leafminer (Tuta absoluta), bagrada bug (Bagrada hilaris) and cutworm (Agrotis ipsilon). To manage these pests, farmers relied heavily on chemical pesticides which are dangerous to them and to the environment. It is therefore important to develop an integrated pest management plan that farmers can use to reduce use of pesticides.


2019 ◽  
Vol 127 (1) ◽  
pp. 12809
Author(s):  
Jacob Nandjui ◽  
Nahoulé Armand Adja ◽  
Kouakou Théodore Kouadio ◽  
Marie-Prisca Adjoafla N’gouandi ◽  
Latifou Idrissou

2020 ◽  
Vol 20 (06) ◽  
pp. 16832-16857
Author(s):  
Gabriel Vusanimuzi Nkomo ◽  
◽  
MM Sedibe ◽  
MA Mofokeng' ◽  
◽  
...  

Many smallholder farmers face crop production constraints, especially under rapidly changing climatic conditions. A survey was carried out to assess farmers’ production constraints, traits, and preferred cowpea varieties. A semi-structured questionnaire was used in a survey of Buhera District, Zimbabwe, in March and April of 2018. Women farmers dominated the survey as they were 52% of the surveyed population, while men occupied 48% of the total population. Eighty-three percent of farmers cited the shortage, unavailability, and cost of fertiliser. Sixteen per cent of farmers acknowledged that they do not have access to quality seeds, and 1% cited labour as the major constraint in cowpea production. Cowpea yield varied from 100 to 500 kg/ha. However, 48% of farmers harvested 200 kg/ha.As for abiotic factors, farmers ranked heat (86%), drought (10%), and soil fertility (4%) as the most important abiotic factors.Ninety-one percent of farmers ranked rust as the most destructive disease, while 2% ranked storage rot, 1% ranked anthracnose, and 1% ranked downy mildew. Eighty-one percent of farmers cited aphids as the main pests, while 3% ranked thrips, 3% ranked legume borers, and 2% ranked pod borers as other pests.Fifty-two percent of farmers preferred varieties that are resistant to diseases such as rust, whereas 48% were not concerned about diseases.As for qualitative traits, 50% of farmers had no specific colour preference, 32% preferred white colour, 14% preferred brown colour, 3% preferred red colour, and 1% preferred tan colour. For quantitative traits, such as grain size, pod size, plant height, and head size, the preferences of farmers varied. Ninety-nine percent of the farmers interviewed preferred cowpea varieties that are bred for drought tolerance, as Buhera District is frequented by intermittent droughts. Farmers’ experience in growing cowpeas ranged from 5 to 30 years. The top ranked accessions were CBC1, IT 18, and Chibundi Chitsvuku,while the least ranked was Kangorongondo. Identified constraints to cowpea farming included lack of education,insect pests, diseases, drought, weeds, harvesting difficulties and a lack of agriculture extension advice. The survey showed that there is a need to breed for biotic factors such as pests and diseases and abiotic factors such as drought and moisture stress.


2017 ◽  
Vol 9 (4) ◽  
pp. 2143-2151 ◽  
Author(s):  
Narendra Kumawat ◽  
Rakesh Kumar ◽  
Jagdeesh Morya ◽  
I.S. Tomar ◽  
R. S. Meena

India is the largest producer and consumer of pulses in the world accounting for about 29 per cent of the world area and 19 per cent of the world’s production. In order to achieve self-sufficiency in pulses, the projected requirement by the year 2025 is estimated at 27.5 MT. To meet this requirement, the productivity needs to be enhanced to 1000 kg/ha, and an additional area of about 3-4 Mha has to be brought under pulses besides reducing post-harvest losses. This uphill task has to be accomplished under more severe production constraints, especially abiotic stresses, abrupt climatic changes, emergence of new species/ strains of insect-pests and diseases, and in-creasing deficiency of secondary and micronutrients in the soil. This requires a two-pronged proactive strategy, i.e. improving per unit productivity and reducing cost of production. The yield levels of pulses have remained low and stagnant, also area and total production. Among the pulses pigeon pea is second most important grain-legumes and major constraints in pigeon pea production is mostly grown in grown on marginal lands under rainfed agriculture and without nutrient management, hence are prone to abiotic stresses. Therefore, it is essential for higher production and productivity of pigeon pea, use of high yielding varieties which suitable for intercrop as well as sole cropping system with best nutrient management practices.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Mary C. Bammer ◽  
Josh Campbell ◽  
Chase B. Kimmel ◽  
James D.. Ellis ◽  
Jaret C. Daniels

The establishment of native wildflower plantings in Florida can benefit agricultural producers as well as native pollinators and other beneficial insects (predators and parasitoids). The plantings do this by:  providing forage and nesting sites for bees, butterflies, and other pollinators, increasing wild bee numbers possibly across the farm, and increasing natural enemies of insect pests (that also depend on forage and nesting sites). This document discusses choosing the right mix of native plant species to benefit many pollinator species, as well as proper site selection, planting practices, and weed control techniques. Wildflower plots should be practical to manage, maximize benefits to wildlife, and fit into the overall management practices of the property. 


Author(s):  
J. Hodgson

Recent assessments of the relative importance of stocking rate. stocking policy and grazing management on the output from pastoral systems are used as a starting point to argue the need for objective pasture assessments to aid control of livestock enterprises to meet production targets. Variations in stocking rates, stocking policy and other management practices all provide alternative means of control of pasture conditions which are the major determinants of pasture and animal performance. Understanding of the influence of pasture conditions on systems performance should provide a better basis for management control and for Communication between farmers, extension officers and researchers. Keywords: Stocking rate, pasture condition, pasture cover


2019 ◽  
Vol 56 (Special) ◽  
pp. 143-155
Author(s):  
SD Mohapatra ◽  
R Tripathi ◽  
Anjani Kumar ◽  
Suchismita Kar ◽  
Minati Mohapatra ◽  
...  

The insect problem is accentuated in intensive rice cropping where the insects occur throughout the year in overlapping generations. Over 800 insect species damaging rice in one way or another, although the majority of them do very little damage. In India, about a dozen of insect species are of major importance but the economic damage caused by these species varies greatly from field to field and from year to year. Insect pests cause about 10-15 per cent yield losses. Farmers lose an estimated average of 37% of their rice crop to insect pests and diseases every year. This review focuses on precision farming tools being used in rice pest and diseases management viz., forecasting model for real-time pest-advisory services, hyper-spectral remote sensing in pest damage assessment, computer-based decision support system, disruptive technologies (mobile apps).


2015 ◽  
Vol 1 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Ghanashyam Bhandari ◽  
Bhuddhi Bahadur Achhami ◽  
Tika Bahadur Karki ◽  
Balram Bhandari ◽  
Gopal Bhandari

A survey was conducted in order to assess the losses of maize under farmers’ storage conditions in the Western hills of Nepal in 2014. The survey area included Thanapati Village Development Committee (VDC) of Gulmi, Aalamdebi VDC of Syangja, Khasauli VDC of Palpa and Baglung municipality-12, Baglung district. Primary information was collected through semi-structured questionnaires among the heterogenous groups of the farming communities. Survey revealed that about 61% respondents reported the storage pest as the major pests and about 12% respondents reported that field pests as the major pests in the western hills. Maize weevil (Sitophylus zeamais Mostsch.) and Angoumois grain moth (Sitotroga cerealella Oliv.) were found to be major storage insect pests in surveyed areas. Majority of respondents (39%) presumed on 10-20% losses during storage. Among the other biotic factors, farmers ranked insect (42%), weeds (32%) and diseases (17%) respectively. Maize storage methods had distinct among the surveyed areas compared with Baglung district to other surveyed areas. In Baglung, about (73%) farmers had stored maize in the form of grain whereas in Palpa, Gulmi and Syangja, about (77%) farmers had practice of storing maize with husk for 5-7 months. Approximately, 40% respondents were using open floor in upper stair “Aanti”as a major maize storage place in Palpa, Gulmi and Syangja whereas almost (79%) of respondents were using sacks to store shelled grains in Baglung. Hence, there is ample opportunity to reduce the storage losses of maize depending upon the existing situation.Journal of Maize Research and Development (2015) 1(1):98-105DOI: http://dx.doi.org/10.5281/zenodo.34288


2010 ◽  
pp. 621-626 ◽  
Author(s):  
H.Q. Hu ◽  
J. Chen ◽  
Z.J. Cai ◽  
R.J. Wu ◽  
X.X. Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document