Current knowledge on transport and reactivity of technology-critical elements (TCEs) in soil and aquifer environments

2020 ◽  
Vol 17 (2) ◽  
pp. 118 ◽  
Author(s):  
Yasmine Kouhail ◽  
Ishai Dror ◽  
Brian Berkowitz

Environmental contextTechnology-critical elements, widely used in modern industry, are found in the environment as a result of both anthropogenic usage and natural sources. This review describes current knowledge on the transport of technology-critical elements in sand, soils and aquifer environments. The chemical compositions of the soils and groundwaters influence the transport of technology-critical elements, and natural colloids increase their mobility. AbstractTechnology-critical elements (TCEs) are now present in soil and aquifer environments, as a result not only of the geogenic origin but also of the recent anthropogenic activities and release. TCEs can interact with all components of the soil and water, which include inorganic and organic ligands (natural organic matter), clays, mineral surfaces and microorganisms. The literature regarding the transport and fate of TCEs in subsurface porous media (e.g. soil and aquifers) is limited and highly diverse. This review offers a detailed analysis of the existing literature on the transport and fate of TCEs in porous media, and emphasises what is still needed to fully understand their behaviour in the environment. Different modes of TCE transport are presented. First, the mobility of TCEs following interaction with colloids (e.g. natural organic matter, clays) is described. For these cases, an increase in the ionic strength and pH of aqueous solutions shows stronger retention or sorption of TCEs on porous matrices. The transport of nanoparticles (NPs) that contain TCEs is presented as a second mode of mobility. The ionic strength of the solution is the key parameter that controls the transport of cerium nanoparticles in porous media; natural organic matter also increases the mobility of nanoparticles. The third part of this review describes sorption and dissolution processes during transport. Finally, results from the field experiments are reported, which show that rare earth elements and indium are transported in the presence of natural organic matter. We conclude this review with suggested directions for future research.

2004 ◽  
Vol 4 (4) ◽  
pp. 175-182 ◽  
Author(s):  
K. Rojek ◽  
F.A. Roddick ◽  
A. Parkinson

Phanerochaete chrysosporium was shown to rapidly decolorise a solution of natural organic matter (NOM). The effect of various parameters such as carbon and nitrogen content, pH, ionic strength, NOM concentration and addition of Mn2+ on the colour removal process was investigated. The rapid decolorisation was related to fungal growth and biosorption rather than biodegradation as neither carbon nor nitrogen limitation, nor Mn2+ addition, triggered the decolorisation process. Low pH (pH 3) and increased ionic strength (up to 50 g L‒1 added NaCl) led to greater specific removal (NOM/unit biomass), probably due to increased electrostatic bonding between the humic material and the biomass. Adsorption of NOM with viable and inactivated (autoclaved or by sodium azide) fungal pellets occurred within 24 hours and the colour removal depended on the viability, method of inactivation and pH. Colour removal by viable pellets was higher under the same conditions, and this, combined with desorption data, confirmed that fungal metabolic activity was important in the decolorisation process. Overall, removals of up to 40–50% NOM from solution were obtained. Of this, removal by adsorption was estimated as 60–70%, half of which was physicochemical, the other half metabolically-dependent biosorption and bioaccumulation. The remainder was considered to be removed by biodegradation, although some of this may be ascribed to bioaccumulation and metabolically-dependent biosorption.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 445-450 ◽  
Author(s):  
D.H. Kim ◽  
S.-H. Moon ◽  
J. Cho

A series of adsorption experiments were performed to investigate the factors affecting the transport of natural organic matter (NOM) in an ion-exchange (IX) membrane. In this study, the structure of the NOM was hypothesized to be an important factor in terms of the organic fouling of IX membrane. It was found that the adsorbed mass of hydrophobic NOM constituent on the membrane surface was higher than that of either the hydrophilic or transphilic NOM constituent. NOM adsorption was seriously affected by the apparent charge of the NOM. As the apparent charge increased, NOM adsorption also significantly increased. Moreover, the molecular mass of the hydrophobic NOM acids was too high to enable them to pass through the IX membrane, and this caused an accumulated adsorption of solutes on the membrane surface, i.e. NOM fouling. In addition, both pH and ionic strength affected NOM adsorption on the surface of the IX membrane. Lower NOM adsorption resulted from a lower pH and a higher ionic strength.


2020 ◽  
Author(s):  
Ting Wang

<p>Natural organic matter (NOM) played an important role in the riverine and global carbon cycle. In order to evaluate the impact of river discharge and anthropogenic activities on the spatio-temporal variability of NOM content and sources in Lancang River, China, a comprehensive study was conducted in two years from the head to the leave-boundary section. As results, the DOC value ranged among 0.91-2.80 mg/L, with sharp decrease in the middle reaches and downstream. While the SOC value significantly enhanced along the water flow, varied from 0.06% to 3.54%. The isotopic composition of organic carbon (δ13C) suggested that predominant contribution of NOM is C3 plants in the upper reach, algae and soil organic matter in the middle reach, and aquatic plants in the downstream. EEM-PARAFAC results proved that NOM in Lancang River is mainly terrestrial organic carbon, while in situ microbial transformed NOM is very low. Moreover, the sharp increase of dissolved CO2 concentration in the lower reaches confirmed the strong respiration of microorganisms due to the higher DO and water temperature, thus resulted in the significantly different fluctuations of DOC and SOC.</p>


2021 ◽  
Vol 13 (1) ◽  
pp. 81-108 ◽  
Author(s):  
C. Arnosti ◽  
M. Wietz ◽  
T. Brinkhoff ◽  
J.-H. Hehemann ◽  
D. Probandt ◽  
...  

Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Valerie Vranova ◽  
Klement Rejsek ◽  
Pavel Formanek

Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.


Sign in / Sign up

Export Citation Format

Share Document