Soil processes affecting crop production in salt-affected soils

2010 ◽  
Vol 37 (7) ◽  
pp. 613 ◽  
Author(s):  
Pichu Rengasamy

Salts can be deposited in the soil from wind and rain, as well as through the weathering of rocks. These processes, combined with the influence of climatic and landscape features and the effects of human activities, determine where salt accumulates in the landscape. When the accumulated salt in soil layers is above a level that adversely affects crop production, choosing salt-tolerant crops and managing soil salinity are important strategies to boost agricultural economy. Worldwide, more than 800 million hectares of soils are salt-affected, with a range of soils defined as saline, acidic–saline, alkaline–saline, acidic saline–sodic, saline–sodic, alkaline saline–sodic, sodic, acidic–sodic and alkaline–sodic. The types of salinity based on soil and groundwater processes are groundwater-associated salinity (dryland salinity), transient salinity (dry saline land) and irrigation salinity. This short review deals with the soil processes in the field that determine the interactions between root-zone environments and plant responses to increased osmotic pressure or specific ion concentrations. Soil water dynamics, soil structural stability, solubility of compounds in relation to pH and pE and nutrient and water movement all play vital roles in the selection and development of plants tolerant to salinity.

Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
František Doležal ◽  
David Zumr ◽  
Josef Vacek ◽  
Josef Zavadil ◽  
Adriano Battilani ◽  
...  

AbstractWater movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland made it possible to derive improved estimates of some parameters for the dual permeability model S1D_DUAL. A reasonably good agreement between the measured and the estimated soil hydraulic properties was obtained. The measured root zone depths were near to those obtained by inverse simulation with S1D _DUAL and to a boundary curve approximation. The measured and S1D _DUAL-simulated soil water pressure heads were comparable with those achieved by simulations with the Daisy model. During dry spells, the measured pressure heads tended to be higher than the simulated ones. In general, the former oscillated between the simulated values for soil matrix and those for the preferential flow (PF) domain. Irrigation facilitated deep seepage after rain events. We conclude that several parallel soil moisture sensors are needed for adequate irrigation control. The sensors cannot detect the time when the irrigation should be stopped.


Author(s):  
Pichu Rengasamy

Salt accumulation in soils, affecting agricultural productivity, environmental health, and the economy of the community, is a global phenomenon since the decline of ancient Mesopotamian civilization by salinity. The global distribution of salt-affected soils is estimated to be around 830 million hectares extending over all the continents, including Africa, Asia, Australasia, and the Americas. The concentration and composition of salts depend on several resources and processes of salt accumulation in soil layers. Major types of soil salinization include groundwater associated salinity, non–groundwater-associated salinity, and irrigation-induced salinity. There are several soil processes which lead to salt build-up in the root zone interfering with the growth and physiological functions of plants. Salts, depending on the ionic composition and concentration, can also affect many soil processes, such as soil water dynamics, soil structural stability, solubility of essential nutrients, and pH and pE of soil water—all indirectly hindering plant growth. The direct effect of salinity includes the osmotic effect affecting water and nutrient uptake and the toxicity or deficiency due to high concentration of certain ions. The plan of action to resolve the problems associated with soil salinization should focus on prevention of salt accumulation, removal of accumulated salts, and adaptation to a saline environment. Successful utilization of salinized soils needs appropriate soil and irrigation management and improvement of plants by breeding and genetic engineering techniques to tolerate different levels of salinity and associated abiotic stress.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498c-498
Author(s):  
A. Fares ◽  
A.K. Alva ◽  
S. Paramasivam

Water and nitrogen (N) are important inputs for most crop production. The main objectives of nitrogen best management practices (NBMP) are to improve N and water management to maximize the uptake efficiency and minimize the leaching losses. This require a complete understanding of fate of N and water mass balance within and below the root zone of the crop in question. The fate of nitrogen applied for citrus production in sandy soils (>95% sand) was simulated using a mathematical model LEACHM (Leaching Estimation And Chemistry Model). Nitrogen removal in harvested fruits and storage in the tree accounted the major portion of the applied N. Nitrogen volatilization mainly as ammonia and N leaching below the root zone were the next two major components of the N mass balance. A proper irrigation scheduling based on continuous monitoring of the soil water content in the rooting was used as a part of the NBMP. More than 50% of the total annual leached water below the root zone was predicted to occur in the the rainy season. Since this would contribute to nitrate leaching, it is recomended to avoid N application during the rainy season.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 474d-474
Author(s):  
N.K. Damayanthi Ranwala ◽  
Dennis R. Decoteau

This study was conducted to evaluate the spectral properties of various colored plastic color mulches and to determine the effects of upwardly reflected light from the mulch surfaces on watermelon plant growth when differences in root zone temperatures are minimized. Two-week-old watermelon plants were grown with black mulch, red-painted mulch, SRM-Red mulch (Sonoco, Inc., Harstville, S.C.), and white mulch. Total light reflection (58 μmol·m–2·s–1 in 400–700 nm) and red: far-red (R:FR = 0.44) of reflected light were lower in black mulch and highest in white mulch (634 and 0.92, respectively). Both black mulch and white mulch had same blue:red (B:R = 0.6) while white mulch had higher B:FR (0.58) in reflected light compared to black mulch (0.26). Reflective properties of red mulches were somewhat similar, and R:FR, B:R, and B:FR were 0.8, 0.2, and 0.18, respectively. However, SRM-Red mulch had highest total light (355 μmol·m–2·s–1 in 400–700 nm) transmission through the mulch, and R:FR, B:R, and B:FR were 0.84, 0.28, and 0.23, respectively. Light transmission through the other mulches was nonsignificant. Watermelon plants grown with black mulch and red mulches had higher internode lengths compared to white mulch after 20 days. Further, plants grown under black had significant higher petiole elongation accompanied with higher dry mass partitioning to petioles, and lower partitioning to roots, stems, and leaves. There was no effects of surface mulch color on total plant dry mass or photosynthesis although plants with black had higher transpiration rate. This suggests the differential regulation of dry mass partitioning among plant parts due to mulch color. The similar plant responses with black mulch and white mulch to plants treated with FR or R light at the end of photoperiod implies the involvement of phytochrome regulation of growth due to mulch surface color.


Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.


2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1358
Author(s):  
Lorenzo De Carlo ◽  
Kimberlie Perkins ◽  
Maria Clementina Caputo

Preferential pathways allow rapid and non-uniform water movement in the subsurface due to strong heterogeneity of texture, composition, and hydraulic properties. Understanding the importance of preferential pathways is crucial, because they have strong impact on flow and transport hydrodynamics in the unsaturated zone. Particularly, improving knowledge of the water dynamics is essential for estimating travel time through soil to quantify hazards for groundwater, assess aquifer recharge rates, improve agricultural water management, and prevent surface stormflow and flooding hazards. Small scale field heterogeneities cannot be always captured by the limited number of point scale measurements collected. In order to overcome these limitations, noninvasive geophysical techniques have been widely used in the last decade to predict hydrodynamic processes, due to their capability to spatialize hydrogeophysical properties with high resolution. In the test site located in Bari, Southern Italy, the geophysical approach, based on electrical resistivity tomography (ERT) monitoring, has been implemented to detect preferential pathways triggered by an artificial rainfall event. ERT-derived soil moisture estimations were obtained in order to quantitatively predict the water storage (m3m−3), water velocity (ms−1), and spread (m2) through preferential pathways by using spatial moments analysis.


2021 ◽  
Author(s):  
Ulrich Weller ◽  
Sara König ◽  
Bibiana Betancur-Corredor ◽  
Birgit Lang ◽  
Mareike Ließ ◽  
...  

<p><span>We developed an integrated model of soil processes – the Bodium – that enables us to predict possible changes in soil functions under varying agricultural management and climatic change.</span></p><p><span>The model combines current knowledge on soil processes by integrating state-of-the-art modules on plant growth, root development, soil carbon and matter turnover with new concepts with respect to soil hydrology and soil structure dynamics. The model domain is at profile scale, with 1D nodes of variable thickness and weight. It is tested with long-term field experiments to ensure a consistent output of the combined modules. The model is site-specific and works with different soil types and climates (weather scenarios).</span></p><p><span>The output can be interpreted towards a broad spectrum of soil functions. Plant production and nutrient balances can be determined directly. The same is possible for water dynamics, with potential surface runoff (as infiltration surplus), storage and percolation together with travel time and groundwater recharge. In addition, nitrate losses are calculated, and the travel time distribution can help with the evaluation of pesticide percolation risk. To evaluate the habitat for biological activity, the activity is calculated in terms of carbon turnover, and the state variables carbon availability, water, air and temperature for the are accessible. Also, for macrofauna the earthworm activity is included. The comparison of scenario runs can be evaluated quantitatively in terms of potential developments of soil functions.</span></p><p><span>The model is work in progress. Further modules that will be implemented are pH dynamics, more explicit microbial activity, and a more complete set of effects of agricultural management on soil structure are integrated.</span></p>


2021 ◽  
Vol 5 (2) ◽  
pp. 428-433
Author(s):  
John M. Peter ◽  
M. U. Hamisu

In this study, two models are computed which are modified penman's monteith and Hargreaves – Samani model. The essence is to provide qualitative information related to the antagonistic effect of climate change on sustainable crop production through qualitative understanding of evaporation and transpiration processes in simple term evapotranspiration (ETo). This is computed using climatic parameters obtained from Abubakar Tafawa Balewa University; Agro weather station, Bauchi for the period of three years. This describes the two processes of water loss on plants, at first, through transpiration and on another note, on the soil surface by evaporation. The study deduced a comparative analysis on aforementioned Methods to determine the evaporating power of the atmosphere in improving crops yield and production through estimating the amount of water needed at the root zone of the plant and also, the seasonal variation during the study. The result of this study shows a little deviation in the two models. The model based on Modified Penman's Monteith displays optimal evapotranspiration. This makes the model satisfy its creation for estimation of reference evapotranspiration. In May, June, September, and October for 2013-2015, high trends are recorded. While In July and August low trend was recorded between climatic parameter and the estimated evapotranspiration. The statistical analyses also show that there is a linear relationship between the two estimated models. In the above months, it shows that application of water is needed for the healthy growth of crops and improved crops yield


Sign in / Sign up

Export Citation Format

Share Document