Adaptation to and recovery from drought stress at vegetative stages in wheat (Triticum aestivum) cultivars

2016 ◽  
Vol 43 (12) ◽  
pp. 1159 ◽  
Author(s):  
Muhammad Abid ◽  
Zhongwei Tian ◽  
Syed Tahir Ata-Ul-Karim ◽  
Feng Wang ◽  
Yang Liu ◽  
...  

Studying plants’ capability to adapt and recover from drought stress is essential because of the ever-changing nature of drought events. To evaluate the genotypically variable morpho-physiological adaptations to drought stress and recovery after re-watering, two wheat cultivars (Luhan-7 and Yangmai-16) were pot-cultured under three levels of water stress: severe (35–40% field capacity, FC) and moderate water deficits (55–60% FC) and well-watered conditions. Drought stress was applied at tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively, followed by re-watering, and we observed changes in leaf characteristics, growth and physiological activities during water stress and rewatering periods as well as final grain yield traits at maturity. Results showed that drought stress adaptability associated with reduced leaf area, higher leaf thickness, chlorophyll, leaf dry matter and maintenance of leaf water potential were more strongly pronounced in Luhan-7 than in Yangmai-16. Under moderate stress both cultivars exhibited a small decrease in leaf gas-exchange and chlorophyll fluorescence activities, followed by rapid recovery. Under severe drought stress, Yangmai-16 displayed relatively less adaptability to drought, with a slower recovery after re-watering and a greater decrease in grain yield. It was concluded that even though crop growth rate completely recovered after re-watering, the final dry matter and grain yield outcomes were affected by pre-drought stress, and were dependant on the drought intensity, adaptability and recovery differences of the cultivars and growth stage. It was also concluded that genotypic variations in adaptability and recovery from drought stress are the indicators of drought tolerance and grain yield sustainability in wheat.

HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 441-449 ◽  
Author(s):  
Christopher Vincent ◽  
Diane Rowland ◽  
Bruce Schaffer

Primed acclimation (PA) is a regulated deficit irrigation (RDI) strategy designed to improve or maintain yield under subsequent drought stress. A previous study showed photosynthetic increases in papaya in response to a PA treatment. The present study was undertaken to test the duration of the PA effect when papaya plants were challenged with severe drought stress. Potted plants were stressed at 1, 2, and 3 months after conclusion of a PA treatment consisting of 3 weeks at soil water tension (SWT) of −20 kPa. Measurements included leaf gas exchange, root growth, and organ dry mass partitioning. PA did not reduce net CO2 assimilation (A) during the deficit period. At the end of the PA period, total dry matter accumulation per plant and for each organ was unaffected, but proportional dry matter partitioning to roots was favored. After resuming full irrigation, A increased and whole plant water use was more than doubled in PA-treated plants. However, water use and A of PA-treated plants decreased to reconverge with those of control plants by 6 weeks after the PA treatment. Over the course of the study, PA plants maintained lower stem height to stem diameter ratios, and shorter internode lengths. However, these changes did not improve photosynthetic response to any of the water-deficit treatments. We conclude that papaya exhibits some signs of stress memory, but that rapid short-term acclimation responses dominate papaya responses to soil water deficit.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 285 ◽  
Author(s):  
Noman Habib ◽  
Qasim Ali ◽  
Shafaqat Ali ◽  
Muhammad Tariq Javed ◽  
Muhammad Zulqurnain Haider ◽  
...  

The present experiment was carried out to study the influences of exogenously-applied nitric oxide (NO) donor sodium nitroprusside (SNP) and hydrogen peroxide (H2O2) as seed primers on growth and yield in relation with different physio-biochemical parameters, antioxidant activities, and osmolyte accumulation in wheat plants grown under control (100% field capacity) and water stress (60% field capacity) conditions. During soaking, the seeds were covered and kept in completely dark. Drought stress markedly reduced the plant growth, grain yield, leaf photosynthetic pigments, total phenolic content (TPC), total soluble proteins (TSP), leaf water potential (Ψw), leaf turgor potential (Ψp), osmotic potential (Ψs), and leaf relative water content (LRWC), while it increased the activities of enzymatic antioxidants and the accumulation of leaf ascorbic acid (AsA), proline (Pro), glycine betaine (GB), malondialdehyde (MDA), and H2O2. However, seed priming with SNP and H2O2 alone and in combination mitigated the deleterious effects of water stress on growth and yield by improving the Ψw, Ψs, Ψp, photosynthetic pigments, osmolytes accumulation (GB and Pro), TSP, and the antioxidative defense mechanism. Furthermore, the application of NO and H2O2 as seed primers also reduced the accumulation of H2O2 and MDA contents. The effectiveness was treatment-specific and the combined application was also found to be effective. The results revealed that exogenous application of NO and H2O2 was effective in increasing the tolerance of wheat plants under drought stress in terms of growth and grain yield by regulating plant–water relations, the antioxidative defense mechanism, and accumulation of osmolytes, and by reducing the membrane lipid peroxidation.


2017 ◽  
Vol 1 ◽  
pp. 222 ◽  
Author(s):  
Dalel Chakri Telahigue ◽  
Laila Ben Yahia ◽  
Fateh Aljane ◽  
Khaled Belhouchett ◽  
Lamjed Toumi

Five quinoa cultivars introduced from Egypte DRC (Desert Research Center-Caire) were tested in an experimental station in Tunisia located under arid climatic conditions. In order to test their adaptation to abiotic constraints; water requirements, yield (grain, dry matter) and water use efficiency (WUE) were correlated to three water stress: T100% of field capacity (T1), T60% of field capacity (T2) and T30% of field capacity (T3). Net irrigation water requirement was estimated using CROPWAT 8.0 software. The study aims to develop an irrigation scheduling for quinoa from January to Jun during 2015 season. The ET0 was between 1.08 mm/day and 4.95 mm/day and net irrigation water requirement was 287.2 mm. For grain yield, 1000 grains weight and dry matter production results show significant differences between cultivars and water stress. The seeds productivity of the five cultivars ranges between 2092.6kg/ha and 270kg/ha under full irrigation and it decreases to reach up 74% under T3 of field capacity stress in comparison with control stress. Similar results were shown for dry matter production. On refilling soil to field capacity with irrigation at critical depletion, 70% field efficiency was achieved which correspond to optimal condition, while adapting fixed interval per stage. For WUE, highest value of irrigation and total water use efficiency for both grain and dry matter  ​​were recorded to the T2 hydrous stress.


2016 ◽  
Vol 37 (6) ◽  
pp. 3941 ◽  
Author(s):  
Viviane Ruppenthal ◽  
Tiago Zoz ◽  
Fábio Steiner ◽  
Maria Do Carmo Lana ◽  
Deise Dalazen Castagnara

Beneficial effects of silicon (Si) in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress) and four Si rates (0, 50, 100 and 200 mg kg–1). Soybean plants were grown until beginning flowering (R1) growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC) in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.


2019 ◽  
Vol 44 (1) ◽  
pp. 1-11 ◽  
Author(s):  
A Nazran ◽  
JU Ahmed ◽  
AJMS Karim ◽  
TK Ghosh

A pot experiment under polyshed condition was carried out at Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur during the period from 27 March 2017 to 5 May 2017 to study the physiological responses of mungbean varieties to drought stress under varying water regimes. The treatments consisted of four mungbean varieties, namely BARI Mung-5, BARI Mung-6, BUmug 2, BUmug 4 and three water regimes viz., 50 to 60% field capacity (FC), 70 to 80% FC and 90 to100% FC which were considered as severe drought stress, moderate drought stress and non-stress, respectively. The experiment was laid out in a completely randomized design with factorial arrangement having four replications. Results indicated that BARI Mung-6 maintained significantly the highest relative water content, leaf water potential, proline content, shoot dry matter and lower rate of electrolyte leakage at 50 to 60% FC (severe drought stress). BUmug 2 showed the lowest performance in terms of all the water relation and physiological characters which indicates its higher sensitivity to severe drought stress. Variety BARI Mung-6 was relatively water stress tolerant than others in respect of physiological adaptations. So, BARI Mung-6 can be a potential variety for cultivation under drought condition where irrigation facility is limited. Bangladesh J. Agril. Res. 44(1): 1-11, March 2019


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


2019 ◽  
Vol 11 (4) ◽  
pp. 197
Author(s):  
Diogo Mendes da Silva ◽  
Suzan Kelly Vilela Bertolucci ◽  
Smail Aazza ◽  
Alexandre Alves de Carvalho ◽  
Simony Carvalho Mendonça ◽  
...  

The purpose of the present work was to evaluate the vegetative growth of Mentha piperita L. cultivated under different water availability, as well its influence in content, chemical composition and in vitro antioxidant activity of its essential oil. Plants were propagated by mother plants microcutting and scions were transplanted to 5 L pots with soil and cattle manure. Afterward, were kept at field capacity for 30 days and under treatment for 40 days. It was treated with different levels of water deficit treatments: (T1): 100 of field capacity (FC); (T2): 80 of FC; (T3): 60 of FC; (T4) 40 of FC with 5 blocks. Vegetative growth was evaluated by dry matter contents of all part of plants and by root/aerial rate. The essential oil of the leaves was extracted by hydrodistillation, analyzed by GC-FID and GC-MS and in vitro antioxidant potential was evaluated. A significant decrease in the dry matter of leaves and stems accompanied with a decrease in the roots dry matter was observed with an increase in the water stress. Quantitative chemical differences were observed in the chemical composition of the essential oil, according water availability. Total antioxidant activity showed a gradual increase as water stress progressed.


2019 ◽  
Vol 18 (6) ◽  
pp. 75-84
Author(s):  
Alireza Motallebi-Azar ◽  
István Papp ◽  
Anita Szegő

Dehydrins are proteins that play a role in the mechanism of drought tolerance. This study aimed at establishing dehydrin profile and accumulation in four local melon varieties of Iran: Mino, Dargazi, Saveii, and Semsori, as well as in a commercial variety Honeydew. Plants were treated with drought stress by adjusting the soil water content to 75, 50, 40, 30 and 20% of field capacity (FC) by withholding water. Water status of plants was monitored based on the seedling fresh weight (FW) and relative water content of leaves (RWC). Total protein content was extracted, then heat-stable protein (HSP) fraction was isolated for each variety and water stress treatment. After SDS-PAGE of HSP, Western blotting analysis was carried out with Anti-dehydrin rabbit (primary) and Goat anti rabbit (secondary) antibodies. ANOVA results showed that with decreasing FC below 75%, FW and RWC decreased, but these changes significantly varied among genotypes. On the basis of FW and RWC data under different drought stress treatments, the following drought-tolerant ranking was established: Mino > Dargazi > Saveii and Honeydew > Semsori, from tolerant to sensitive order. Results of Western blot analysis showed that expression of some proteins with molecular weights of 19–52 kDa was induced in the studied varieties under drought stress (% FC). Expression level of the dehydrin proteins in different varieties was variable and also depending on the drought stress level applied. However, dehydrin proteins (45 and 50 kDa) showed strong expression levels in all varieties under severe drought stress (20% FC). The abundance of dehydrin proteins was higher in tolerant varieties (Mino and Dargazi) than in moderate and drought sensitive genotypes. Consequently, dehydrins represent a potential marker for selection of genotypes with enhanced drought tolerance.


2019 ◽  
Vol 11 (2) ◽  
pp. 266-276
Author(s):  
Kamal MIRI-HESAR ◽  
Ali DADKHODAIE ◽  
Saideh DOROSTKAR ◽  
Bahram HEIDARI

Drought stress is one of the most significant environmental factors restricting plant production all over the world. In arid and semi-arid regions where drought often causes serious problems, wheat is usually grown as a major crop and faces water stress. In order to study drought tolerance of wheat, an experiment with 34 genotypes including 11 local and commercial cultivars, 17 landraces, and six genotypes from International Maize and Wheat Improvement Center (CIMMYT) was conducted at the experimental station, School of Agriculture, Shiraz University, Iran in 2010-2011 growing season. Three different irrigation regimes (100%, 75% and 50% Field Capacity) were applied and physiological and biochemical traits were measured for which a significant difference was observed in genotypes. Under severe water stress, proline content and enzymes’ activities increased while the relative water content (RWC) and chlorophyll index decreased significantly in all genotypes. Of these indices, superoxide dismutase (SOD) and RWC were able to distinguish tolerant genotypes from sensitives. Moreover, yield index (YI) was useful in detecting tolerant genotypes. The drought susceptibility index (DSI) varied from 0.40 to 1.71 in genotypes. These results indicated that drought-tolerant genotypes could be selected based on high YI, RWC and SOD and low DSI. On the whole, the genotypes 31 (30ESWYT200), 29 (30ESWYT173) and 25 (Akbari) were identified to be tolerant and could be further used in downstream breeding programs for the improvement of wheat tolerance under water limited conditions.


Sign in / Sign up

Export Citation Format

Share Document