A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28

2018 ◽  
Vol 45 (10) ◽  
pp. 1046 ◽  
Author(s):  
Chanchal Sharma ◽  
Gautam Saripalli ◽  
Santosh Kumar ◽  
Tinku Gautam ◽  
Avneesh Kumar ◽  
...  

Leaf rust disease causes severe yield losses in wheat throughout the world. During the present study, high-throughput RNA-Seq analysis was used to gain insights into the role of Lr28 gene in imparting seedling leaf rust resistance in wheat. Differential expression analysis was conducted using a pair of near-isogenic lines (NILs) (HD 2329 and HD 2329 + Lr28) at early (0 h before inoculation (hbi), 24 and 48 h after inoculation (hai)) and late stages (72, 96 and 168 hai) after inoculation with a virulent pathotype of pathogen Puccinia triticina. Expression of a large number of genes was found to be affected due to the presence/absence of Lr28. Gene ontology analysis of the differentially expressed transcripts suggested enrichment of transcripts involved in carbohydrate and amino acid metabolism, oxidative stress and hormone metabolism, in resistant and/or susceptible NILs. Genes encoding receptor like kinases (RLKs) (including ATP binding; serine threonine kinases) and other kinases were the most abundant class of genes, whose expression was affected. Genes involved in reactive oxygen species (ROS) homeostasis and several genes encoding transcription factors (TFs) (most abundant being WRKY TFs) were also identified along with some ncRNAs and histone variants. Quantitative real-time PCR was also used for validation of 39 representative selected genes. In the long term, the present study should prove useful in developing leaf rust resistant wheat cultivars through molecular breeding.

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 631-635 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
J. Huerta-Espino ◽  
V. Calvo-Salazar ◽  
C. X. Lan ◽  
R. P. Singh

Leaf rust, caused by Puccinia triticina (Pt), has become a globally important disease for durum wheat (Triticum turgidum subsp. durum) since the detection of race group BBG/BN, which renders ineffective a widely deployed seedling resistance gene present in several popular cultivars including Mexican cultivars Altar C84 and Atil C2000. The resistance gene continues to play a key role in protecting durum wheat against bread wheat–predominant races since virulence among this race group has not been found. We developed F3 and F5 mapping populations from a cross between Atil C2000 and the susceptible line Atred #1. Resistance was characterized by greenhouse seedling tests using three Pt races. Segregation tests indicated the presence of a single gene, which was mapped to the distal end of 7BS by bulk segregant analysis. The closest marker, wmc606, was located 5.5 cM proximal to the gene. No known leaf rust resistance genes are reported in this region; this gene was therefore designated as Lr72. The presence of Lr72 was further investigated in greenhouse tests in a collection of durum wheat using 13 Pt races. It was concluded that at least one additional gene protects durum wheat from bread wheat–predominant Pt races.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Botany ◽  
2010 ◽  
Vol 88 (6) ◽  
pp. 575-589 ◽  
Author(s):  
Xiben Wang ◽  
Guus Bakkeren ◽  
Brent McCallum

Populations of Puccinia triticina , one of the casual agents of wheat leaf rust disease, in the pacific (British Columbia and Alberta), prairie (Manitoba and Saskatchewan), and eastern regions (Quebec and Ontario) of Canada from 1997 to 2007 were analyzed for virulence and genetic diversity by revealing expressed sequence tag derived simple sequence repeat (EST-SSR) polymorphisms. Since 1997, a significant shift in the virulence of P. triticina occurred across Canada. The diversity of P. triticina virulence phenotypes in Manitoba and Saskatchewan, as measured by Shannon and Simpson indexes, decreased due to the directional selection toward predominant virulence phenotypes, whereas it remained relatively constant in Quebec and Ontario. The clustering of P. triticina virulence phenotypes from 1997 to 2007 was similar to that found in previous years, and was correlated with virulence to leaf rust resistance genes Lr2a, Lr2c, and Lr17a. Distinct EST-SSR profiles were found in different groups of P. triticina virulence phenotypes based on virulence to Lr2a, Lr2c, and Lr17a. In addition, the population of P. triticina in Manitoba and Saskatchewan was different from that in Quebec and Ontario from 1997 to 2007, based on both virulence characteristics and EST-SSR genotypes.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1484
Author(s):  
Alma Kokhmetova ◽  
Shynbolat Rsaliyev ◽  
Makpal Atishova ◽  
Madina Kumarbayeva ◽  
Angelina Malysheva ◽  
...  

Leaf rust, caused by Puccinia triticina (Ptr), is a significant disease of spring wheat spread in Kazakhstan. The development of resistant cultivars importantly requires the effective use of leaf rust resistance genes. This study aims to: (i) determine variation in Ptr population using races from the East Kazakhstan, Akmola, and Almaty regions of Kazakhstan; (ii) examine resistance during seedling and adult plant stages; and (iii) identify the sources of Lr resistance genes among the spring wheat collection using molecular markers. Analysis of a mixed population of Ptr identified 25 distinct pathotypes. Analysis of these pathotypes using 16 Thatcher lines that are near-isogenic for leaf rust resistance genes (Lr) showed different virulence patterns, ranging from least virulent “CJF/B” and “JCL/G” to highly virulent “TKT/Q”. Most of the pathotypes were avirulent to Lr9, Lr19, Lr24, and Lr25 and virulent to Lr1, Lr2a, Lr3ka, Lr11, and Lr30. The Ptr population in Kazakhstan is diverse, as indicated by the range of virulence observed in five different races analyzed in this study. The number of genotypes showed high levels of seedling resistance to each of the five Ptr races, thus confirming genotypic diversity. Two genotypes, Stepnaya 62 and Omskaya 37, were highly resistant to almost all five tested Ptr pathotypes. Stepnaya 62, Omskaya 37, Avangard, Kazakhstanskaya rannespelaya, and Kazakhstanskaya 25 were identified as the most stable genotypes for seedling resistance. However, most of the varieties from Kazakhstan were susceptible in the seedling stage. Molecular screening of these genotypes showed contrasting differences in the genes frequencies. Among the 30 entries, 22 carried leaf rust resistance gene Lr1, and two had Lr9 and Lr68. Lr10 and Lr28 were found in three and four cultivars, respectively. Lr19 was detected in Omskaya 37. Two single cultivars separately carried Lr26 and Lr34, while Lr37 was not detected in any genotypes within this study. Field evaluation demonstrated that the most frequent Lr1 gene is ineffective. Kazakhstanskaya 19 and Omskaya 37 had the highest number of resistance genes: three and four Lr genes, respectively. Two gene combinations (Lr1, Lr68) were detected in Erythrospermum 35 and Astana. The result obtained may assist breeders in incorporating effective Lr genes into new cultivars and developing cultivars resistant to leaf rust.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
I. A. Imbaby ◽  
M. A. Mahmoud ◽  
M. E. M. Hassan ◽  
A. R. M. Abd-El-Aziz

Leaf rust, caused byPuccinia triticinaEriks., is a common and widespread disease of wheat (Triticum aestivumL.) in Egypt. Host resistance is the most economical, effective, and ecologically sustainable method of controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lrgenes). The objective of this study was to identifyLrgenes in fifteen wheat cultivars from Egypt. Ten genes,Lr13,Lr19,Lr24,Lr26,Lr34,Lr35 Lr36,Lr37,Lr39, andLr46, were detected in fifteen wheat cultivars using various molecular markers. The most frequently occurring genes in fifteen Egyptian wheat cultivars wereLr13,Lr24,Lr34, andLr36identified in all the cultivars used, followed byLr26andLr35(93%),Lr39(66%),Lr37(53%), andLr46(26.6%) of the cultivars, and finallyLr19was present in 33.3% of cultivars. It is concluded that there was a good variation inLrgenes carried by wheat cultivars commercially grown in Egypt. Therefore, strategies for deploying resistance genes to prolong effective disease resistance are suggested to control wheat leaf rust disease.


2011 ◽  
Vol 38 (6) ◽  
pp. 479 ◽  
Author(s):  
Raman Dhariwal ◽  
Shailendra Vyas ◽  
Govindraj R. Bhaganagare ◽  
Shailendra K. Jha ◽  
Jitendra P. Khurana ◽  
...  

Genome-wide transcriptome analysis of seedling resistance to leaf rust conferred by Lr28 gene in wheat (Triticum aestivum L.) was conducted to identify differentially expressed genes during incompatible interaction. A virulent leaf rust race 77–5 was used for inoculation of resistant (HD2329 + Lr28) and susceptible (HD2329 – Lr28) wheat NILs and cDNA-AFLP analyses was carried out. As many as 223 differential transcripts appeared following leaf rust inoculation; these included 122 transcripts that appeared exclusively in resistant NIL, whereas 39 transcripts appeared both in resistant and susceptible NILs. Sequence analyses of 37 transcripts, which appeared in the resistant NIL revealed that 15 transcripts had homology with genes involved in protein synthesis, signal transduction, transport, disease resistance and metabolism. The functions of remaining 22 transcripts could not be determined; these included six novel genes reported for the first time in wheat. Specific primers could be designed for 18 of the 37 transcripts, which included genes with putative and unknown functions. Quantitative real time PCR analysis was conducted using these 18 pairs of primers. A majority (13) of these transcripts appeared within 48 h reaching a peak value at 96 h in resistant NIL signifying their role in providing leaf rust resistance.


2016 ◽  
Vol 106 (4) ◽  
pp. 380-385 ◽  
Author(s):  
J. A. Kolmer ◽  
M. A. Acevedo

Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya, from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. Single-uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes and for molecular genotypes with 10 simple sequence repeat (SSR) primers. Nine virulence phenotypes were described among the 193 isolates tested for virulence. Phenotype BBBQJ, found only in Ethiopia, was predominantly collected from tetraploid wheat. Phenotype EEEEE, also found only in Ethiopia, was exclusively collected from tetraploid wheat and was avirulent to the susceptible hexaploid wheat ‘Thatcher’. Phenotypes MBDSS and MCDSS, found in both Ethiopia and Kenya, were predominantly collected from common wheat. Phenotypes CCMSS, CCPSS, and CBMSS were found in Ethiopia from common wheat at low frequency. Phenotypes TCBSS and TCBSQ were found on durum wheat and common wheat in Kenya. Four groups of distinct SSR genotypes were described among the 48 isolates genotyped. Isolates with phenotypes BBBQJ and EEEEE were in two distinct SSR groups, and isolates with phenotypes MBDSS and MCDSS were in a third group. Isolates with CCMSS, CCPSS, CBMSS, TCBSS, and TCBSQ phenotypes were in a fourth SSR genotype group. The diverse host environment of Ethiopia has selected and maintained a genetically divergent population of P. triticina.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 979-984 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State, in order to determine the virulence of the wheat leaf rust population in 2005. Single uredinial isolates (797 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, Lr28, and winter wheat lines with genes Lr41 and Lr42. In the United States in 2005, 72 virulence phenotypes of P. triticina were found. Virulence phenotype TDBGH, selected by virulence to resistance gene Lr24, was the most common phenotype in the United States, and was found throughout the Great Plains region. Virulence phenotype MCDSB with virulence to Lr17a and Lr26 was the second most common phenotype and was found widely in the wheat growing regions of the United States. Virulence phenotype MFPSC, which has virulence to Lr17a, Lr24, and Lr26, was the third most common phenotype, and was found in the Ohio Valley region, the Great Plains, and California. The highly diverse population of P. triticina in the United States will continue to present a challenge for the development of wheat cultivars with effective durable resistance to leaf rust.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1076-1085 ◽  
Author(s):  
M. Niranjana ◽  
Vinod ◽  
J.B. Sharma ◽  
Niharika Mallick ◽  
S.M.S. Tomar ◽  
...  

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


Sign in / Sign up

Export Citation Format

Share Document