Molecular data sheds light on the classification of long-legged flies (Diptera:Dolichopodidae)

2011 ◽  
Vol 25 (4) ◽  
pp. 303 ◽  
Author(s):  
Christoph Germann ◽  
Corinne Wimmer ◽  
Marco Valerio Bernasconi

Dolichopodidae (long-legged flies) is the world’s fourth largest dipteran family, but a phylogeny based on a broad global taxon sample is still lacking. We present here a first molecular phylogenetic hypothesis for Dolichopodidae, based on 157 dolichopodid species in 68 genera and 15 subfamilies from the Old and New World, and seven empidoid species (Empididae, Hybotidae) as outgroups. Both relatively fast-evolving mitochondrial markers (COI, 12S, 16S) and a more conserved nuclear marker (18S) were used, the latter being widely employed to study the phylogeny at higher taxonomic levels. We present strong evidence for Microphorinae as sister group to Dolichopodidae sensu stricto, and for the monophyletic Parathalassiinae as part of Dolichopodidae sensu stricto. Monophyly of Achalcinae, Dolichopodinae, and Sciapodinae is supported and Stolidosomatinae are placed within Sympycninae. Diaphorinae, Medeterinae, Neurigoninae, Rhaphiinae, and Sympycninae are paraphyletic, and Hydrophorinae and Peloropeodinae polyphyletic. Our broad taxon sample allows us to gain new insights into the complex systematics of Dolichopodidae. Our results highlight several problems with the traditional classification, which have considerable consequences for the systematic status of some taxa. The poor resolution observed in deep divergences supports previous hypotheses suggesting a rapid early radiation of Dolichopodidae.

2019 ◽  
Vol 50 (5) ◽  
pp. 702-716 ◽  
Author(s):  
Veronica Pereyra ◽  
Adriano Cavalleri ◽  
Claudia Szumik ◽  
Christiane Weirauch

The New World family Heterothripidae (~90 spp., four genera) comprises flower-feeding and ectoparasitic thrips. The monophyly of the group has remained untested and species-level relationships were unknown. Morphological (123 characters) and molecular (28S rDNA D2 and D3-D5, H3, and partial COI) data were compiled to reconstruct phylogenetic relationships of this group. The ingroup was represented by 65 species of the four recognized Heterothripidae genera (Aulacothrips Hood, Heterothrips Hood, Lenkothrips De Santis & Sureda, and Scutothrips Stannard). The monophyly of Heterothripidae was recovered in the total evidence and molecular data only analyses with the ectoparasitic Aulacothrips placed as the sister group of the remaining Heterothripidae. The large genus Heterothrips (>80% of the species-level diversity), which was thoroughly sampled in our analyses (56 species), was recovered as paraphyletic with respect to Scutothrips and Lenkothrips. We conclude that additional morphological and molecular data would be desirable before revising the classification of Heterothripidae


Zootaxa ◽  
2020 ◽  
Vol 4869 (1) ◽  
pp. 149-150
Author(s):  
KAROL SZAWARYN ◽  
WIOLETTA TOMASZEWSKA

Recently the classification of the ladybird beetles’ tribe Epilachnini was revised based on morphological and molecular data (Szawaryn et al. 2015, Tomaszewska & Szawaryn 2016). Based on these findings a new classification of the tribe was proposed. The genus Epilachna Chevrolat in Dejean, 1837 sensu lato was split into several clades, with Epilachna sensu stricto limited to New World fauna, and one of the Afrotropical clades, formerly defined as Epilachna sahlbergi-group (Fürsch 1963), has been named Chazeauiana Tomaszewska & Szawaryn, 2015 (Szawaryn et al. 2015), with Epilachna sahlbergi Mulsant, 1850 as the type species. However, that taxon received an unnecessary replacement name, as Mulsant (1850) already described a subgenus of Epilachna named Cleta distributed in Afrotropics, with Epilachna eckloni Mulsant, 1850 as the type species, which also belongs to the E. sahlbergi-group. Consequently Cleta has been elevated to the genus level (Tomaszewska & Szawaryn 2016) and Chazeuiana was synonymized with Cleta as a junior synonym. Nonetheless, authors (Tomaszewska & Szawaryn 2016) were not aware that the name Cleta is preoccupied. It appeared that Duponchel (1845) established the genus Cleta in the family Geometridae (Lepidoptera) that makes Cleta Mulsant (1850) a junior homonym. Therefore, we propose here Afrocleta nom. nov. as a replacement name for Cleta Mulsant, 1850. 


Author(s):  
Antonio Zurita ◽  
Cristina Cutillas

AbstractCtenophthalmus is considered the largest genus within the Order Siphonaptera. From a morphological point of view, only males of this genus can be identified at species and subspecies levels using morphological keys, whereas there are no morphological criteria in order to classify females at these taxonomical levels. Furthermore, the amount of available molecular and phylogenetic data for this genus is quite scarce so far. The main objective of this work was to assess the utility of the combination of nuclear and mitochondrial markers with respect to their ability to differentiate among different subspecies within the Ctenophthalmus genus. With this purpose, we carried out a comparative morphological and molecular study of three different subspecies (Ctenophthalmus baeticus arvernus, Ctenophthalmus nobilis dobyi, and Ctenophthalmus andorrensis catalaniensis) in order to clarify and discuss its taxonomic status. In addition, our study complemented the molecular data previously provided for Ctenophthalmus baeticus boisseauorum and Ctenophthalmus apertus allani subspecies. We sequenced five different molecular markers: EF1-α, ITS1, ITS2, cox1, and cytb. Our results confirmed that morphological data by themselves are not able to discriminate among Ctenophthalmus female taxa; however, the combination of the nuclear marker EF1-α together with mtDNA markers cytb and cox1 constituted a useful taxonomical and phylogenetic tool to solve this issue. Based on these results, we consider that the use of this molecular approach should be gradually used within Ctenophthalmus genus in order to complement its classical taxonomy and clarifying the complex taxonomy of other congeneric species of fleas.


Phytotaxa ◽  
2017 ◽  
Vol 297 (2) ◽  
pp. 139 ◽  
Author(s):  
Charlotte Sletten Bjorå ◽  
MARTE ELDEN ◽  
INGER NORDAL ◽  
ANNE K. BRYSTING ◽  
TESFAYE AWAS ◽  
...  

Sister group relations of Ethiopian species of Anthericum and Chlorophytum and variation patterns in the C. gallabatense and C. comosum complexes were studied using molecular phylogenetic analyses, morphometrics, and scanning electron microscopy of seed surfaces. Results indicate that molecular data largely support previous morphological conclusions, and that speciation has occurred in Ethiopia at least three times in Anthericum and repeatedly within different subclades of Chlorophytum. Areas particularly rich in endemic species are the lowland area around Bale Mountains in SE Ethiopia and in the Beninshangul Gumuz regional state in W Ethiopia near the border to Sudan. A new species, Chlorophytum mamillatum Elden & Nordal, is described, and the names C. tordense and C. tetraphyllum are re-instated.


Zootaxa ◽  
2007 ◽  
Vol 1517 (1) ◽  
pp. 53-62 ◽  
Author(s):  
FRANK GLAW ◽  
ZOLTÁN T. NAGY ◽  
MIGUEL VENCES

Based on a specimen found at Montagne d'Ambre in northern Madagascar morphologically agreeing with Compsophis albiventris Mocquard, 1894, we report on the rediscovery of this enigmatic snake genus and species and its molecular phylogenetic relationships. Compsophis albiventris, considered to be the only representative of its genus and unreported since its original description, bears strong morphological similarities to species of Geodipsas Boulenger, 1896. A molecular phylogeny based on DNA sequences of three mitochondrial and nuclear genes (complete cytochrome b, fragments of 16S rRNA and c-mos) in Compsophis albiventris and three Geodipsas species corroborated close relationships between C. albiventris and Geodipsas boulengeri, and showed that the genera Compsophis and Geodipsas together form a monophyletic unit. Despite the general similarities, morphological data and chromatic features support the existence of two species groups, corresponding to Compsophis and Geodipsas. We consequently consider Geodipsas as a subgenus of Compsophis and transfer all species currently in Geodipsas into the genus Compsophis.


2013 ◽  
Vol 27 (4) ◽  
pp. 379 ◽  
Author(s):  
Robert M. Lasley ◽  
Joelle C. Y. Lai ◽  
Brent P. Thoma

Chlorodiella longimana is the only chlorodielline species presently known from the western Atlantic Ocean. Although C. longimana superficially resembles other species of the genus in general appearance of the carapace, morphological analyses revealed a suite of characters that separate it from all other known species of Chlorodiella – in particular, ambulatory legs having dactyli with a single tip and a basal antennal segment with a lateral flange that extends halfway into the orbital hiatus, excluding the antennal flagellum. In addition, a phylogenetic analysis of the Chlorodiellinae inferred from three mitochondrial markers (12S, 16S, COXI) and a nuclear marker (histone H3), confirms that C. longimana is genetically distinct from its congeners. A new genus, Ratha, is proposed to accommodate C. longimana. In addition, a phylogenetic analysis of six chlorodielline genera indicates that the subfamily is polyphyletic as presently defined.


2015 ◽  
Vol 29 (6) ◽  
pp. 591 ◽  
Author(s):  
Marco Gebiola ◽  
Antonio P. Garonna ◽  
Umberto Bernardo ◽  
Sergey A. Belokobylskij

Doryctinae (Hymenoptera : Braconidae) is a large and diverse subfamily of parasitic wasps that has received much attention recently, with new species and genera described and phylogenies based on morphological and/or molecular data that have improved higher-level classification and species delimitation. However, the status of several genera is still unresolved, if not controversial. Here we focus on two related groups of such genera, Dendrosoter Wesmael–Caenopachys Foerster and Ecphylus Foerster–Sycosoter Picard & Lichtenstein. We integrated morphological and molecular (COI and 28S–D2 genes) evidence to highlight, by phylogenetic analyses (maximum likelihood and Bayesian) and a posteriori morphological examination, previously overlooked variation, which is here illustrated and discussed. Monophyly of Dendrosoter and Caenopachys and the presence of synapomorphic morphological characters support synonymy of Caenopachys under Dendrosoter. Low genetic differentiation and high variability for putatively diagnostic morphological characters found in both C. hartigii (Ratzeburg) and C. caenopachoides (Ruschka) supports synonymy of D. caenopachoides under D. hartigii, syn. nov. Morphological and molecular evidence together also indicate independent generic status for Sycosoter, stat. rev., which is here resurrected. This work represents a further advancement in the framework of the ongoing effort to improve systematics and classification of the subfamily Doryctinae.


2019 ◽  
Vol 67 (S5) ◽  
pp. S101-S109
Author(s):  
Itzahí Silva-Morales ◽  
Mónica J. López-Aquino ◽  
Valentina Islas-Villanueva ◽  
Fernando Ruiz-Escobar ◽  
J. Rolando Bastida-Zavala

Introduction: The sipunculans are a group of marine invertebrates that have been little studied in the tropical eastern Pacific (TEP). Antillesoma antillarum is a species belonging to the monospecific family Antillesomatidae, considered widely distributed in tropical and subtropical localities across the globe. Objective: The main objective of this work was to examine the morphological and molecular differences between specimens from both coasts of tropical America to clarify the taxonomy of this species. Methods: We examined the morphology with material from the Mexican Caribbean and southern Mexican Pacific. To perform molecular analyses, two sequences of the COI molecular marker were obtained from specimens collected in Panteón Beach, Oaxaca, southern Mexican Pacific, and compared with four sequences identified as A. antillarum in GenBank, all of them from different localities. A phylogenetic reconstruction was performed with the maximum likelihood method and genetic distances were calculated with the Kimura 2P model and compared to reference values. Results: The phylogenetic analysis revealed three different lineages of Antillesoma that are well supported by bootstrap values: Antillesoma antillarum sensu stricto from the Caribbean Sea and Florida; a sister group to the one represented by our samples from the Mexican Pacific; and a third group from Thailand. Conclusion: Based on morphological traits and molecular data, Antillesoma mexicanum sp. nov. is described from the Mexican Pacific, differing from A. antillarum in the trunk papillae, color patterns and, additionally, the specimens from the Caribbean attain significantly bigger trunk sizes than the ones Pacific.


Author(s):  
Seher Güven ◽  
Serdar Makbul ◽  
Kamil Coşkunçelebì

We report chromosome counts for ten taxa of Vincetoxicum sensu stricto (s. str.) (Apocynaceae) from Turkey (of which two are endemic), including the first chromosome counts for V. canescens subsp. pedunculata, V. funebre, V. fuscatum subsp. boissieri, V. parviflorum and V. tmoleum. Two taxa of V. fuscatum proved to be tetraploid (2n=44) and the remaining eight taxa diploid (2n=22). Molecular phylogenetic analyses based on nrDNA (ITS) and cpDNA (trnT-trnL) (including 31 newly generated sequences) confirm the position of the Turkish Vincetoxicum in the Vincetoxicum s. str. clade. Vincetoxicum fuscatum, V. parviflorum, V. speciosum, as well as the Turkish endemic V. fuscatum subsp. boissieri, were clearly resolved as species-level clades, whereas the delimitation of the rest of the Turkish taxa was less clear based on molecular data.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Elsa Call ◽  
Christoph Mayer ◽  
Victoria Twort ◽  
Lars Dietz ◽  
Niklas Wahlberg ◽  
...  

Abstract Billions of specimens can be found in natural history museum collections around the world, holding potential molecular secrets to be unveiled. Among them are intriguing specimens of rare families of moths that, while represented in morphology-based works, are only beginning to be included in genomic studies: Pseudobistonidae, Sematuridae, and Epicopeiidae. These three families are part of the superfamily Geometroidea, which has recently been defined based on molecular data. Here we chose to focus on these three moth families to explore the suitability of a genome reduction method, target enrichment (TE), on museum specimens. Through this method, we investigated the phylogenetic relationships of these families of Lepidoptera, in particular the family Epicopeiidae. We successfully sequenced 25 samples, collected between 1892 and 2001. We use 378 nuclear genes to reconstruct a phylogenetic hypothesis from the maximum likelihood analysis of a total of 36 different species, including 19 available transcriptomes. The hypothesis that Sematuridae is the sister group of Epicopeiidae + Pseudobistonidae had strong support. This study thus adds to the growing body of work, demonstrating that museum specimens can successfully contribute to molecular phylogenetic studies.


Sign in / Sign up

Export Citation Format

Share Document