ENERGY DISPERSIVE X-RAY ANALYSIS OF FIELD PEAS WITH DIFFERENT COOKING QUALITY

1983 ◽  
Vol 63 (4) ◽  
pp. 1071-1074 ◽  
Author(s):  
J. CHONG ◽  
S. T. ALI-KHAN ◽  
B. B. CHUBEY ◽  
G. H. GUBBELS

An energy dispersive X-ray (EDX) analytical method was used to study the freeze-dried powder of seeds of field peas (Pisum sativum L.) with good and poor cooking quality. EDX analysis of the electron-dense particles in the freeze-dried powder revealed the presence of high concentrations of Mg, P, and K, suggesting that the particles were protein bodies. Seeds with different cooking quality were compared with respect to the ratios of these elements in the dense particles. Statistical analysis indicated a significant correlation between these ratios and cooking quality.Key words: Pisum sativum, protein bodies, elemental analysis

1978 ◽  
Vol 56 (19) ◽  
pp. 2408-2414 ◽  
Author(s):  
J. N. A. Lott ◽  
J. S. Greenwood ◽  
C. M. Vollmer

This study was undertaken to discover what elemental losses, if any, were occurring from globoid crystals in seed protein bodies during glutaraldehyde – osmium tetroxide fixation. Unfixed cotyledon and radicle tissue of Cucurbita maxima seed, or tissue after glutaral–dehyde–OsO4 treatment, was quick frozen in liquid N2, ground with a cold mortar and pestle, and low-temperature freeze-dried. Globoid crystals in the freeze-dried powder were subjected to energy dispersive x-ray (EDX) analysis. OsO4 fixation resulted in a major loss of P, Mg, and K from cotyledon globoid crystals and a major loss of P, Mg, K, and Ca from radicle globoid crystals. Despite the loss of elements, the OsO4-fixed globoid crystals were still electron dense. When globoid crystals from glutaraldehyde-fixed, dehydrated, and embedded cotyledon tissue were compared with globoid crystals from glutaraldehyde–OsO4-fixed, dehydrated, and embedded tissue, some extraction was found. The degree of extraction varied from complete loss of P, K, and Mg to loss of K only.Effects of glutaraldehyde–OsO4 fixation upon elemental composition of globoid crystals in several other species was also determined. Brazil nut (Bertholletia excelsa) radicle tissue or cotyledon tissue from walnut (Juglans regia), hazelnut (Corylus avellana), sunflower (Helianthus annuus), golden everlasting daisy (Helichrysum bracteatum), cashew (Anacardium occidentale), pistachio (Pistacia vera), and the Western Australian red-capped gum (Eucalyptus erythrocorys) were fixed either in glutaraldehyde or in glutaraldehyde–OsO4. In these species, EDX analysis of globoid crystal sections showed that OsO4 fixation results in major loss of Mg, K, and Ca. Generally, phosphorus levels were reduced from control values as well. When carrying out EDX analysis studies of globoid crystals, we recommend (1) avoiding any use of OsO4, (2) keeping all fixation, washing, and dehydration times as short as possible, and (3) checking all observations with freeze-dried powders.


1985 ◽  
Vol 12 (4) ◽  
pp. 341 ◽  
Author(s):  
JNA Lott ◽  
PJ Randall ◽  
DJ Goodchild ◽  
S Craig

In many species globoid crystals in protein bodies of seeds are very common while in other species they are rarely observed. A review of literature suggested that the balance between divalent (Mg2+ and Ca2+) and monovalent (K+) cations may be important in determining whether or not globoid crystals will form. To test this hypothesis, experiments were carried out to add Mg and Ca, or Ca alone, to pods developing on K-deficient pea plants. While it was possible to cause a reduction in K concentration and increases in Mg and Ca concentrations, any changes to the normal mineral storage pattern in pea cotyledons were remarkably small. In some treatments, statistically significant increases in the ratio (Mg + Ca)/K were obtained and the sample with the greatest increase was examined in detail by electron microscopy and energy dispersive X-ray analysis. In this sample globoid crystals were common, in contrast to their normally rare occurrence in pea cotyledonary tissue.


1978 ◽  
Vol 56 (17) ◽  
pp. 2050-2061 ◽  
Author(s):  
John N. A. Lott ◽  
Mark S. Buttrose

Protein bodies from almond (Prunus dulcis), Brazil nut (Bertholletia excelsa), and quandong (Santalum acuminatum) have been studied in thin sections of fixed and embedded tissue, in freeze-fracture replicas of unfixed tissue, by chemical analysis of tissue for P, K, Mg, and Ca, and by energy dispersive x-ray (EDX) analysis of both sections of glutaraldehyde-fixed tissue and freeze-dried tissue powders. The protein bodies in all three species contained globoid crystals, protein crystalloids, and proteinaceous matrix regions. Results of EDX analyses were consistent with globoid crystals being rich in phytin. Variation in both the structure and the elemental composition of globoids was common. In almond some globoids were lobed rather than spherical, and large globoid crystals often contained considerable calcium whereas small globoid crystals contained little if any calcium. The globoid crystals of Brazil nut often contained barium in addition to P, K, Ca, and Mg. Protein crystalloids of Brazil nut were compound crystals. Protein bodies of quandong seed, which is largely endosperm rather than embryo, were unexceptional.


1982 ◽  
Vol 62 (4) ◽  
pp. 893-899 ◽  
Author(s):  
G. H. GUBBELS ◽  
S. T. ALI-KHAN ◽  
B. B. CHUBEY ◽  
M. STAUVERS

The yellow-seeded field pea (Pisum sativum L. ’Century’) was grown at two levels of soil moisture, two levels of N and P and harvested at four dates in a 3-yr field study to determine the effects of these factors on cooking quality as indicated by the color, weight and viscosity of the puree of cooked samples. Nitrogen lowered cooking quality where yields were not improved but maintained quality when yield was increased. Phosphorus applications improved yield and cooking quality, with highest improvements in yield coinciding with greatest improvements in quality. Harvesting too early or too late resulted in lower cooking quality.


1982 ◽  
Vol 62 (3) ◽  
pp. 555-560 ◽  
Author(s):  
G. H. GUBBELS

Diquat treatments were applied to green-seeded field peas (Pisum sativum L.) over a 5-yr period to determine the effect of applications at various stages of maturity on some agronomic and quality characteristics. The spray application effectively hastened drying of the plants, eliminating the need for windrowing. The rate of 0.28 kg a.i./ha was adequate. The earlier harvesting permitted by the treatments reduced loss of green color and germinability associated with weathering and reduced yield loss from shattering. Applications made as early as the 50% brown pod stage did not markedly affect yield, protein content, seed size, cooking quality or germinability. However, a later stage of spraying may be advisable under conditions of slow maturation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 921
Author(s):  
Simonetta Muccifora ◽  
Hiram Castillo-Michel ◽  
Francesco Barbieri ◽  
Lorenza Bellani ◽  
Monica Ruffini Castiglione ◽  
...  

Biosolids (Bs) for use in agriculture are an important way for introducing and transferring TiO2 nanoparticles (NPs) to plants and food chain. Roots of Pisum sativum L. plants grown in Bs-amended soils spiked with TiO2 800 mg/kg as rutile NPs, anatase NPs, mixture of both NPs and submicron particles (SMPs) were investigated by Transmission Electron Microscopy (TEM), synchrotron radiation based micro X-ray Fluorescence and micro X-ray Absorption Near-Edge Structure (µXRF/µXANES) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). TEM analysis showed damages in cells ultrastructure of all treated samples, although a more evident effect was observed with single anatase or rutile NPs treatments. Micro-XRF and TEM evidenced the presence of nano and SMPs mainly in the cortex cells near the rhizodermis. Micro-XRF/micro-XANES analysis revealed anatase, rutile, and ilmenite as the main TiO2 polymorphs in the original soil and Bs, and the preferential anatase uptake by the roots. For all treatments Ti concentration in the roots increased by 38–56%, however plants translocation factor (TF) increased mostly with NPs treatment (261–315%) and less with SMPs (about 85%), with respect to control. In addition, all samples showed a limited transfer of TiO2 to the shoots (very low TF value). These findings evidenced a potential toxicity of TiO2 NPs present in Bs and accumulating in soil, suggesting the necessity of appropriate regulations for the occurrence of NPs in Bs used in agriculture.


1980 ◽  
Vol 58 (6) ◽  
pp. 699-711 ◽  
Author(s):  
Ernest Spitzer ◽  
John N. A. Lott

Protein bodies of dry seeds of tomato (Lycopersicon esculentum) from radicle, hypocotyl, cotyledon, and endosperm tissue were extensively studied using thin-sectioning, freeze-fracturing and energy dispersive x-ray (EDX) analysis. Protein bodies varied in size, were oval to circular in section, and generally consisted of a proteinaceous matrix, globoid crystal, and protein crystalloid components. Size, shape, and arrangements of globoid crystals and protein crystalloids varied even within the same cell. Globoid crystals were generally oval to circular in section. They were always surrounded by a proteinaceous matrix. In a given protein body the number present ranged from a few to numerous. A protein body generally contained only one protein crystalloid. In section, protein crystalloids were irregular or angular in shape. They were composed of substructural particles which formed lattice planes. EDX analysis of tomato seed globoid crystals revealed the presence of P, K, and Mg in all cases, a fact that is consistent with globoid crystals being phytin-rich. Rarely, small amounts of calcium were found along with P, K, and Mg in globoid crystals of each of the tissue regions considered. The distribution pattern of cells with Ca containing globoid crystals was random. Small amounts of Fe and Mn were also found in the globoid crystals of protein bodies from certain cell types. These two elements, unlike calcium, were specific in terms of their distribution. Globoid crystals from the protodermal cells often contained Mn and Fe. The globoid crystals from provascular tissue of radicle, hypocotyl, and cotyledon regions often contained Fe while globoid crystals in the first layer of large cells surrounding these provascular areas always contained Fe. Results from EDX analysis of the proteinaceous material from the protein bodies are presented and discussed as are variations in elemental content due to different fixations.


2004 ◽  
Vol 82 (9) ◽  
pp. 2568-2578 ◽  
Author(s):  
H. H. Stein ◽  
G. Benzoni ◽  
R. A. Bohlke ◽  
D. N. Peters

1997 ◽  
Vol 77 (1) ◽  
pp. 101-103 ◽  
Author(s):  
T. D. Warkentin ◽  
A. G. Sloan ◽  
S. T. Ali-Khan

Field pea seeds from 10 cultivars grown at two locations in Manitoba in 1986 and 1987 were analyzed for proximate and mineral profiles. Cultivars differed significantly in their level of total protein, crude fat, ADF, and all minerals tested. However, differences were not extremely large and were comparable to European reports. Location-year also had a significant effect on the levels of total protein, ADF, and all minerals tested. In most cases, the warmest location-year produced relatively higher levels of minerals, ash, and total protein, and lower seed yield than the coolest location-year. Key words: Field pea, Pisum sativum L., mineral


Sign in / Sign up

Export Citation Format

Share Document