Putative imprinted gene expression in uniparental bovine embryo models

2008 ◽  
Vol 20 (5) ◽  
pp. 589 ◽  
Author(s):  
Nancy T. D' Cruz ◽  
Katrina J. Wilson ◽  
Melissa A. Cooney ◽  
R. Tayfur Tecirlioglu ◽  
Irina Lagutina ◽  
...  

Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner.

2006 ◽  
Vol 18 (2) ◽  
pp. 142
Author(s):  
N. Ruddock ◽  
K. Wilson ◽  
M. Cooney ◽  
R. Tecirlioglu ◽  
V. Hall ◽  
...  

Developmental pathways in the mammalian embryo are profoundly influenced by the epigenetic interaction of the environment and the genome. Loss of epigenetic control has been implicated in aberrant gene expression and altered imprinting patterns with consequence to the physiology and viability of the conceptus. Bovine somatic cell nuclear transfer (SCNT) is contingent on in vitro culture, and both SCNT and culture conditions are known to induce changes in embryonic gene expression patterns. Using these experimental models, this study compared gene expression of Day 7 cloned blastocysts created from three different SCNT protocols using the same cell line, with Day 7 in vivo blastocysts to elucidate mechanisms responsible for variations in phenotypic outcomes. SCNT methods included: (1) traditional SCNT by subzonal injection (SI); (2) handmade cloning (HMC); and (3) modified serial nuclear transfer (SNT), developed within the group. Four imprinted genes (Grb10, Ndn, Nnat, and Ube3a), four chromatin remodeling genes (Cbx1, Cbx3, Smarca4, and Smarcb1) and two genes implicated in polycystic liver disease (Prkcsh and Sec63) were analyzed in single blastocysts from each treatment (n = 5). All blastocysts expressed Actin, Oct-4 and Ifn-tau. All genes were sequence verified. Several genes were expressed ubiquitously across all groups, including Ndn, Ube3a, Cbx1, Cbx3, and Smarcb1. Interestingly, Grb10 was not expressed in two HMCs and one SNT blastocyst. Nnat was weakly expressed in one in vivo blastocyst and in the majority of cloned blastocysts in all groups. Prkcsh and Sec63 were expressed in all but one HMC blastocyst. While gene expression patterns were mostly maintained following SCNT, the imprinted genes Nnat and Grb10 showed instances of differential or abnormal expression in SCNT embryos. The chromatin remodeling genes were maintained in all SCNT treatments. Prkcsh and Sec63 were both absent in one HMC blastocyst, with implications for liver dysfunction, a condition previously reported in abnormal cloned offspring. The variable mRNA expression following SCNT provides an insight into genetic and environmental factors controlling implantation, placentation, organ formation, and fetal growth.


2008 ◽  
Vol 20 (1) ◽  
pp. 173
Author(s):  
F. Perecin ◽  
S. C. Méo ◽  
W. Yamazaki ◽  
C. R. Ferreira ◽  
F. H. Biase ◽  
...  

Some gestational alterations associated with bovine somatic cell nuclear transfer (SCNT) are presumably consequences of abnormal imprinted gene expression. This work aimed to evaluate the expression patterns of imprinted genes IGF2 and IGF2R in bovine fetuses and chorioallantoic membranes derived from in vivo- and in vitro-produced embryos. Fetuses were produced by AI (in vivo group, n = 3), IVF (n = 3), parthenogenesis (n = 3), or SCNT (n = 2). Cows with positive pregnancy diagnosis after ultrasonographic examination were slaughtered between Days 33 and 36 of gestation. The reproductive tract was transported on ice to the laboratory, where fetuses and chorioallantoic fragments were collected and stored in liquid nitrogen. Total RNA extraction was performed using TRIzol, according to manufacturer's instructions, and the reverse transcription reaction was carried out with 1 µg of total RNA, 6.75 µm oligo pd(T)12–18, and 50 U of reverse transcriptase (Improm-II, Promega, Madison, WI, USA). The relative quantification of IGF2 and IGF2R transcripts was done using real-time PCR with SYBR Green dye. The average efficiency of PCR amplifications was estimated for each gene using a linear regression on the logarithm of fluorescence per cycle (Ramakers et al. 2003 Neurosci. Lett. 339, 62–66), and the expression ratios were calculated according to the method described previously by Livak and Schmittgen (2001 Methods 25, 402–408). To verify statistical differences, a pair-wise fixed reallocation randomization test (Pfaffl et al. 2002 Nucl. Acids Res. 30, e36) was used. All expression ratios were normalized by glyceraldehyde 3-phosphate dehydrogenase expression and calibrated by the in vivo group (expression assumed as 1.00 for all genes and tissues). The analysis of relative differences on transcript levels of imprinted genes in fetuses revealed IGF2 down-regulation (P < 0.05) in the SCNT (0.19) and parthenogenetic (0.02) groups when compared to the in vivo group and IVF fetuses (2.02). In chorioallantois, IGF2 was down-regulated (P < 0.001) in parthenotes (0.001) when compared to the in vivo, IVF (3.13), and SCNT (0.98) groups. IGF2R was down-regulated (P < 0.001) in SCNT chorioallantois (0.25) when compared to the in vivo group. Low expression of IGF2 in parthenogenetic fetuses and chorioallantois confirms its imprinted status in bovine. Alterations in the relative frequency of IGF2 and IGF2R transcripts were observed in bovine SCNT-derived fetuses and chorioallantoic membranes, respectively, supporting the hypothesis that abnormalities in the expression of imprinted genes are causes for the low efficiency of SCNT procedures in this species. Such alterations suggest modifications in DNA methylation patterns at IGF2 and IGF2R imprinting centers.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Sandra Milena Bernal ◽  
Julia Heinzmann ◽  
Doris Herrmann ◽  
Bernd Timmermann ◽  
Ulrich Baulain ◽  
...  

SummaryCyclic adenosine monophosphate (cAMP) modulators have been used to avoid spontaneous oocyte maturation and concomitantly improve oocyte developmental competence. The current work evaluated the effects of the addition of cAMP modulators forskolin, 3-isobutyl-1-methylxanthine (IBMX) and cilostamide during in vitro maturation on the quality and yields of blastocysts. The following experimental groups were evaluated: (i) slicing or (ii) aspiration and maturation in tissue culture medium (TCM)199 for 24 h (TCM24slicing and TCM24aspiration, respectively), (iii) aspiration and maturation in the presence of cAMP modulators for 30 h (cAMP30aspiration) and in vivo-produced blastocysts. In vitro-matured oocytes were fertilized and presumptive zygotes were cultured in vitro to assess embryo development. Cleavage, blastocyst formation, blastocyst cell number, mRNA abundance of selected genes and global methylation profiles were evaluated. Blastocyst rate/zygotes for the TCM24aspiration protocol was improved (32.2 ± 2.1%) compared with TCM24slicing and cAMP30aspiration (23.4 ± 1.2% and 23.3 ± 2.0%, respectively, P<0.05). No statistical differences were found for blastocyst cell numbers. The mRNA expression for the EGR1 gene was down-regulated eight-fold in blastocysts that had been produced in vitro compared with their in vivo counterparts. Gene expression profiles for IGF2R, SLC2A8, COX2, DNMT3B and PCK2 did not differ among experimental groups. Bovine testis satellite I and Bos taurus alpha satellite methylation profiles from cAMP30aspiration protocol-derived blastocysts were similar to patterns that were observed in their in vivo equivalents (P > 0.05), while those from the other groups were significantly elevated. It is concluded that retrieval, collection systems and addition of cAMP modulators can affect oocyte developmental competence, which is reflected not only in blastocyst rates but also in global DNA methylation and gene expression patterns.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2020 ◽  
Vol 295 (30) ◽  
pp. 10293-10306 ◽  
Author(s):  
Qiquan Wang ◽  
Xianling Bian ◽  
Lin Zeng ◽  
Fei Pan ◽  
Lingzhen Liu ◽  
...  

Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. βγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of βγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of βγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e20591 ◽  
Author(s):  
Qingfeng Zhang ◽  
Yilong Zhang ◽  
Yufu Huang ◽  
Xiangyang Xue ◽  
He Yan ◽  
...  

2006 ◽  
Vol 74 (5) ◽  
pp. 2985-2995 ◽  
Author(s):  
JoAnn M. Tufariello ◽  
Kaixia Mi ◽  
Jiayong Xu ◽  
Yukari C. Manabe ◽  
Anup K. Kesavan ◽  
...  

ABSTRACT Approximately one-third of the human population is latently infected with Mycobacterium tuberculosis, comprising a critical reservoir for disease reactivation. Despite the importance of latency in maintaining M. tuberculosis in the human population, little is known about the mycobacterial factors that regulate persistence and reactivation. Previous in vitro studies have implicated a family of five related M. tuberculosis proteins, called resuscitation promoting factors (Rpfs), in regulating mycobacterial growth. We studied the in vivo role of M. tuberculosis rpf genes in an established mouse model of M. tuberculosis persistence and reactivation. After an aerosol infection with the M. tuberculosis Erdman wild type (Erdman) or single-deletion rpf mutants to establish chronic infections in mice, reactivation was induced by administration of the nitric oxide (NO) synthase inhibitor aminoguanidine. Of the five rpf deletion mutants tested, one (ΔRv1009) exhibited a delayed reactivation phenotype, manifested by delayed postreactivation growth kinetics and prolonged median survival times among infected animals. Immunophenotypic analysis suggested differences in pulmonary B-cell responses between Erdman- and ΔRv1009-infected mice at advanced stages of reactivation. Analysis of rpf gene expression in the lungs of Erdman-infected mice revealed that relative expression of four of the five rpf-like genes was diminished at late times following reactivation, when bacterial numbers had increased substantially, suggesting that rpf gene expression may be regulated in a growth phase-dependent manner. To our knowledge, ΔRv1009 is the first M. tuberculosis mutant to have a specific defect in reactivation without accompanying growth defects in vitro or during acute infection in vivo.


Sign in / Sign up

Export Citation Format

Share Document