scholarly journals 207 OOCYTE SURVIVAL AND FOLLICULAR DEVELOPMENT IN Fas-KNOCKOUT AND KIT-DEFICIENT DOUBLE MUTANT MICE

2005 ◽  
Vol 17 (2) ◽  
pp. 254
Author(s):  
M. Moniruzzaman ◽  
K.O. Sakamaki ◽  
Y. Akazawa ◽  
T. Miyano

Growth factors and cytokines regulate survival and growth of mammalian oocytes via their cognate receptors. Among those receptors, KIT, a receptor tyrosine kinase, has been thought of as an essential molecule for growth and survival of oocytes and for follicular development. The defect of KIT-mediated signals leads to the loss of oocytes and impairment of follicular development. Fas is a member of the death receptor family inducing apoptosis; it expresses in the ovary. In a previous study (Sakata et al. 2003 Cell Death Differ. 10, 676–86), we generated KIT-deficient and Fas-knockout double mutant (Wv/Wv:Fas−/−) mice to study the relation between Fas and KIT signaling in germ cell apoptosis. To further understand the role of KIT in oocyte survival and follicular development, we examined the ovaries of Wv/Wv and Wv/Wv:Fas−/− in comparison to those of C57BL/6 (wild type) mice. We also examined the possibility of overcoming the deleterious effects of KIT deficiency by ovarian allotransplantation. One ovary of each mouse was fixed for immediate histological examination and the other was transplanted under the kidney capsule of a female SCID (severe combined immune deficiency) mouse. Ovaries and recovered grafts were fixed, embedded, serially sectioned at 5 μm, stained with hematoxylin and eosin, and examined under a microscope. Oocytes were counted in every section where the nucleus was seen, avoiding double counting in adjacent sections. Mean (with standard deviation) numbers of oocytes per graft or ovary were compared using Student's t-test. At 13 days post-coitum (dpc), ovaries of Wv/Wv fetuses contained 1104.3 ± 118.8 (n = 4) germ cells which was significantly (P < 0.05) lower than those of wild-type mice. However, at 16 dpc (n = 6) and 2-days old (n = 6), ovaries did not contain any germ cells/oocytes. After allotransplantation of the ovaries (n = 6) from Wv/Wv fetuses (13 dpc) for 2 weeks, all of the germ cells disappeared. When the ovaries from 2-day-old Wv/Wv mice (n = 6) were allotransplanted for 12 days, no oocytes appeared. On the other hand, transplanted ovaries from C57BL/6 fetuses (13 dpc) contained 2162.0 ± 97.3 (n = 6) oocytes after 2 weeks. In those ovaries, 4.7 ± 1.6% follicles developed to secondary follicles which contained growing oocytes. Importantly, ovaries of 2-day-old Wv/Wv:Fas−/− mice (n = 4) contained 1936.0 ± 245.0 oocytes (64.0 ± 10.0% of wild-type mice), and 14-day-old mice (n = 4) still contained 911.3 ± 106.3 follicles in which 28.6 ± 6.0% and 11.4 ± 3.2% follicles developed to primary and secondary follicles, respectively. These results indicate that oocyte death due to KIT-deficiency can not be rescued by ovarian transplantation in SCID mice, and that the Fas-knockout condition partially prevents the death of oocytes induced by KIT-deficiency, and primordial follicles develop in this condition.

Reproduction ◽  
2007 ◽  
Vol 133 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Mohammad Moniruzzaman ◽  
Kazuhiro Sakamaki ◽  
Yukiko Akazawa ◽  
Takashi Miyano

In mammals, oocyte growth and follicular development are known to be regulated by KIT, a tyrosine kinase receptor. Fas is a member of the death receptor family inducing apoptosis. Here, we investigated germ cell survival, oocyte growth and follicular development in KIT-deficient (Wv/Wv:Fas+/+), Fas-deficient (+/+:Fas−/−), and both KIT- and Fas-deficient (Wv/Wv:Fas−/−) mice during fetal and postnatal periods. Further, the ovaries of these mice were transplanted in immunodeficient mice to compare oocyte growth and follicular development under a condition isolated from the extraovarian effects of KIT- and Fas-deficiency. Higher numbers of germ cells were found in the fetal and postnatal ovaries of Fas-deficient mice than in the same-aged wild-type mice. In KIT-deficient mice, ovaries at 13 dayspostcoitum(dpc) contained 1106±72 (n=3) germ cells, but the ovaries contained no oocytes after birth. Twenty-one days after transplantation of the ovaries at 13 dpc, no oocytes/germ cells were found. A higher number of germ cells (3843±108;n=3) were observed in the Wv/Wv:Fas−/−genotypes than in Wv/Wv:Fas+/+mice at 13 dpc. Furthermore, Wv/Wv:Fas−/−mice contained 528±91 (n=3) oocytes at 2 days, and follicles developed to the antral stage at 14 days of age. After transplantation of fetal and neonatal ovaries from Wv/Wv:Fas−/−mice, increased numbers of growing oocytes and developing follicles were obtained compared with those in 14-day old ovariesin vivo. These results show that oocytes grow and follicles develop without KIT signaling, although KIT might be essential for the survival of germ cells/oocytes in mice.


1985 ◽  
Vol 63 (9) ◽  
pp. 1582-1585 ◽  
Author(s):  
Leslie G. Hickok

Abscisic acid normally inhibits growth and male sexual differentiation (antheridia formation) in gametophytes of the fern Ceratopteris. Abscisic acid resistant mutants show increased growth and sexual differentiation in comparison with the wild type when cultured in the presence of abscisic acid. Two different mutants that confer resistance to the effects of abscisic acid have been fully characterized. One shows moderate resistance and the other strong resistance. The mutations involve separate but linked loci. Recombination between the loci yields double mutant (cis) recombinants that exhibit additive effects and show exceptional levels of abscisic acid resistance.


Reproduction ◽  
2007 ◽  
Vol 134 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Wei Shen ◽  
Lan Li ◽  
Zhaodai Bai ◽  
Qingjie Pan ◽  
Mingxiao Ding ◽  
...  

Little is known about the mechanisms underlying primordial follicular formation and the acquisition of competence to resume meiosis by growing oocytes. It is therefore important to establish anin vitroexperimental model that allows one to study such mechanisms. Mouse follicular development has been studiedin vitroover the past several years; however, no evidence has been presented showing that mature oocytes can be obtained from mouse fetal germ cells prior to the formation of primordial follicles. In this study, a method has been established to obtain mature oocytes from the mouse fetal germ cells at 16.5 days postcoitum (dpc). From the initiation of primordial follicular formation to the growth of early secondary follicles, ovarian tissues from 16.5 dpc fetal mice were culturedin vitrofor 14 days. Subsequently, 678 intact secondary follicles were isolated from 182 mouse fetal ovaries and cultured for 12 days. A total of 141 oocytes inside antral follicles were maturedin vitro, and 102 oocytes underwent germinal vesicle breakdown. We found that 97 oocytes were fertilized and 15 embryos were able to form morula–blastocysts. We also analyzed various genomic imprinting markers and showed that the erasure of genomic imprinting markers in the parental generation was also imposed on the oocytes that developed from fetal germ cells. Our results demonstrate that mouse fetal germ cells are able to form primordial follicles with ovarian cells, and that oocytes within the growing follicles are able to mature normallyin vitro.


2010 ◽  
Vol 192 (19) ◽  
pp. 4912-4922 ◽  
Author(s):  
Kendra H. Steele ◽  
John E. Baumgartner ◽  
Michelle Wright Valderas ◽  
R. Martin Roop

ABSTRACT Brucella strains are exposed to potentially toxic levels of H2O2 both as a consequence of their aerobic metabolism and through the respiratory burst of host phagocytes. To evaluate the relative contributions of the sole catalase KatE and the peroxiredoxin AhpC produced by these strains in defense against H2O2-mediated toxicity, isogenic katE, ahpC, and katE ahpC mutants were constructed and the phenotypic properties of these mutants compared with those of the virulent parental strain B. abortus 2308. The results of these studies indicate that AhpC is the primary detoxifier of endogenous H2O2 generated by aerobic metabolism. KatE, on the other hand, plays a major role in scavenging exogenous and supraphysiologic levels of H2O2, although this enzyme can play a supporting role in the detoxification of H2O2 of endogenous origin if AhpC is absent. B. abortus ahpC and katE mutants exhibit wild-type virulence in C57BL/6 and BALB/c mice, but the B. abortus ahpC katE double mutant is extremely attenuated, and this attenuation is not relieved in derivatives of C57BL/6 mice that lack NADPH oxidase (cybb) or inducible nitric oxide synthase (Nos2) activity. These experimental findings indicate that the generation of endogenous H2O2 represents a relevant environmental stress that B. abortus 2308 must deal with during its residence in the host and that AhpC and KatE perform compensatory roles in detoxifying this metabolic H2O2.


1998 ◽  
Vol 143 (3) ◽  
pp. 625-635 ◽  
Author(s):  
Sandra Fanchiotti ◽  
Fabiana Fernández ◽  
Cecilia D'Alessio ◽  
Armando J. Parodi

Interaction of monoglucosylated oligosaccharides with ER lectins (calnexin and/or calreticulin) facilitates glycoprotein folding but this interaction is not essential for cell viability under normal conditions. We obtained two distinct single Schizosaccharomyces pombe mutants deficient in either one of the two pathways leading to the formation of monoglucosylated oligosaccharides. The alg6 mutant does not glucosy- late lipid-linked oligosaccharides and transfers Man9GlcNAc2 to nascent polypeptide chains and the gpt1 mutant lacks UDP-Glc:glycoprotein glucosyltransferase (GT). Both single mutants grew normally at 28°C. On the other hand, gpt1/alg6 double-mutant cells grew very slowly and with a rounded morphology at 28°C and did not grow at 37°C. The wild-type phenotype was restored by transfection of the double mutant with a GT-encoding expression vector or by addition of 1 M sorbitol to the medium, indicating that the double mutant is affected in cell wall formation. It is suggested that facilitation of glycoprotein folding mediated by the interaction of monoglucosylated oligosaccharides with calnexin is essential for cell viability under conditions of extreme ER stress such as underglycosylation of proteins caused by the alg6 mutation and high temperature. In contrast, gls2/alg6 double-mutant cells that transfer Man9GlcNAc2 and that are unable to remove the glucose units added by GT as they lack glucosidase II (GII), grew at 37°C and had, when grown at 28°C, a phenotype of growth and morphology almost identical to that of wild-type cells. These results indicate that facilitation of glycoprotein folding mediated by the interaction of calnexin and monoglucosylated oligosaccharides does not necessarily require cycles of reglucosylation–deglucosylation catalyzed by GT and GII.


Genetics ◽  
1978 ◽  
Vol 88 (2) ◽  
pp. 255-265
Author(s):  
Jerry F Feldman ◽  
Cheryl A Atkinson

ABSTRACT A circadian clock mutant of Neurospora crassa with a period length of about 25.8 hours (4 hr longer than wild type) has been isolated after mutagenesis of the band strain. This mutant, called frq-5, segregates as a single nuclear gene, maps near the centromere on linkage group III, and is unlinked to four previously described clock mutants clustered on linkage group VII R (Feldman and Hoyle 1973, 1976). frq-5 differs from the other clock mutants in at least two other respects: (1) it is recessive in heterokaryons, and (2) it grows at about 60% the rate of the parent band strain on both minimal and complete media. Double mutants between frq-5 and each of the other clock mutants show additivity of period length-two long period mutants produce a double mutant whose period length is longer than either of the two single mutants, while a long and a short period double mutant has an intermediate period length. Although slow growth and long periodicity of frq-5 have segregated together among more than 300 progeny, slow growth per se is not responsible for the long period, since all the double mutants have the slow growth characteristic of frq-5, but have period lengths both shorter and longer than wild type.


2006 ◽  
Vol 26 (15) ◽  
pp. 5588-5594 ◽  
Author(s):  
Zhuo Tang ◽  
Joseph A. Bauer ◽  
Bei Morrison ◽  
Daniel J. Lindner

ABSTRACT We have previously demonstrated that nitrosylcobalamin (NO-Cbl), an analogue of vitamin B12 that delivers nitric oxide (NO), had potent antiproliferative activity against several human cancer cell lines. NO-Cbl induced apoptosis via a death receptor/caspase-8 pathway. In this study, we demonstrate that a functional Apo2L/TRAIL receptor was necessary for the induction of cell death by NO-Cbl. Furthermore, the Apo2L/TRAIL death receptor DR4 (TRAIL R1) was S nitrosylated following NO-Cbl treatment. Human melanoma (A375), renal carcinoma (ACHN), and ovarian carcinoma (NIH-OVCAR-3) cells were treated with NO-Cbl and subjected to the biotin switch assay; S-nitrosylated DR4 was detected in all three cell lines. NO-Cbl treatment did not cause S nitrosylation of DR5. The seven cysteine residues located in the cytoplasmic domain of DR4 were individually point mutated to alanines. NIH-OVCAR-3 cells expressing the DR4 C336A mutation lacked S nitrosylation following NO-Cbl treatment. Overexpression of wild-type DR4 sensitized cells to growth inhibition by NO-Cbl. Cells expressing the DR4 C336A mutant were more resistant to NO-Cbl and Apo2L/TRAIL than were the other six C-A mutations or wild-type cells. The C336A mutant also displayed blunted caspase-8 enzymatic activity following NO-Cbl treatment compared to the other mutants. Thus, DR4 residue C336 becomes S nitrosylated and promotes apoptosis following NO-Cbl treatment.


1991 ◽  
Vol 112 (3) ◽  
pp. 441-447 ◽  
Author(s):  
R Kamiya ◽  
E Kurimoto ◽  
E Muto

Two types of Chlamydomonas reinhardtii flagellar mutants (idaA and idaB) lacking partial components of the inner-arm dynein were isolated by screening mutations that produce paralyzed phenotypes when present in a mutant missing outer-arm dynein. Of the currently identified three inner-arm subspecies I1, I2, and I3, each containing two heterologous heavy chains (Piperno, G., Z. Ramanis, E. F. Smith, and W. S. Sale. 1990. J. Cell Biol. 110:379-389), idaA and idaB lacked I1 and I2, respectively. The 13 idA isolates comprised three genetically different groups (ida1, ida2, ida3) and the two idaB isolates comprised a single group (ida4). In averaged cross-section electron micrographs, inner dynein arms in wild-type axonemes appeared to have two projections pointing to discrete directions. In ida1-3 and ida4 axonemes, on the other hand, either one of them was missing or greatly diminished. Both projections were weak in the double mutant ida1-3 x ida4. These observations suggest that the inner dynein arms in Chlamydomonas axonemes are aligned not in a single straight row, but in a staggered row or two discrete rows. Both ida1-3 and ida4 swam at reduced speed. Thus, the inner-arm subspecies missing in these mutants are not necessary for flagellar motility. However, the double mutants ida1-3 x ida4 were nonmotile, suggesting that axonemes with significant defects in inner arms cannot function. The inner-arm dynein should be important for the generation of axonemal beating.


2006 ◽  
Vol 189 (5) ◽  
pp. 1884-1889 ◽  
Author(s):  
Alycia N. Bittner ◽  
Amanda Foltz ◽  
Valerie Oke

ABSTRACT Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30°C and 40°C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.


2019 ◽  
Author(s):  
Nafisa Nuzhat ◽  
Kanako Ikami ◽  
Haley Abbott ◽  
Heather Tanner ◽  
Allan C. Spradling ◽  
...  

AbstractIn adult mammalian females, primordial follicles that form in the fetal/neonatal ovary are the only source to sustain adult ovarian function. Our previous studies revealed that during oocyte differentiation and primordial follicle formation in mouse fetal ovaries, primary oocytes form via gaining cytoplasm and organelles from sister germ cells that are connected to them by intercellular bridges within germline cysts. To better understand the role of intercellular bridges in oocyte differentiation, we analyzed mutant females lacking testis-expressed 14 (Tex14), a gene involved in cytokinesis and bridge formation. In Tex14-/- fetal ovaries, germ cells divide to form a reduced number of cysts in which sister germ cells are still connected via syncytia or fragmented cell membranes, rather than normal intercellular bridges. Compared with wildtype cysts, Tex14-/- cysts fragment at a higher frequency and produce a greatly reduced number of primary oocytes with highly precocious cytoplasmic enrichment and enlarged volume. By contrast, Tex14+/- germline cysts are less fragmented and generate primary oocytes that are smaller than wild type. Interestingly, enlarged Tex14-/- primary oocytes are much more stable than wild type oocytes and more efficiently sustain folliculogenesis, whereas undersized Tex14+/- primary oocytes turn over at an accelerated rate. Our observations directly link the nature of fetal germ cell connectivity to cytoplasmic enrichment during oocyte differentiation and to oocyte developmental potential in the adult ovary. Our results imply that the duration of adult ovarian function is strongly influenced by the number of primary oocytes acquiring highly enriched cytoplasm during oocyte differentiation in fetal ovaries, rather than just by the size of the primordial follicle pool.


Sign in / Sign up

Export Citation Format

Share Document