scholarly journals Production of transgenic piglets using ICSI–sperm-mediated gene transfer in combination with recombinase RecA

Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 259-272 ◽  
Author(s):  
Francisco A García-Vázquez ◽  
Salvador Ruiz ◽  
Carmen Matás ◽  
M José Izquierdo-Rico ◽  
Luis A Grullón ◽  
...  

Sperm-mediated gene transfer (SMGT) is a method for the production of transgenic animals based on the intrinsic ability of sperm cells to bind and internalize exogenous DNA molecules and to transfer them into the oocyte at fertilization. Recombinase-A (RecA) protein-coated exogenous DNA has been used previously in pronuclear injection systems increasing integration into goat and pig genomes. However, there are no data regarding transgene expression after ICSI. Here, we set out to investigate whether the expression of transgenic DNA in porcine embryos is improved by recombinase-mediated DNA transfer and if it is possible to generate transgenic animals using this methodology. Different factors which could affect the performance of this transgenic methodology were analyzed by studying 1) the effect of the presence of exogenous DNA and RecA protein on boar sperm functionality; 2) the effect of recombinase RecA on in vitro enhanced green fluorescent protein (EGFP)-expressing embryos produced by ICSI or IVF; and 3) the efficiency of generation of transgenic piglets by RecA-mediated ICSI. Our results suggested that 1) the presence of exogenous DNA and RecA–DNA complexes at 5 μg/ml did not affect sperm functionality in terms of motility, viability, membrane lipid disorder, or reactive oxygen species generation; 2) EGFP-expressing embryos were obtained with a high efficiency using the SMGT–ICSI technique in combination with recombinase; however, the use of IVF system did not result in any fluorescent embryos; and 3) transgenic piglets were produced by this methodology. To our knowledge, this is the first time that transgenic pigs have been produced by ICSI-SGMT and a recombinase.

2008 ◽  
Vol 20 (1) ◽  
pp. 230
Author(s):  
F. A. García-Vázquez ◽  
A. Gutiérrez-Adán ◽  
J. Gadea

Sperm-mediated gene transfer (SMGT) is a transgenesis technique used in pigs mainly byAI (Lavitrano ML et al. 2002 Proc. Natl. Acad. Sci. USA 99, 14 230–14 235), and by intracytoplasmic spermi injection (ICSI) (Garcia-Vazquez FA et al. 2006 Reprod. Domest. Anim. 41, 338), but up to now, it has not been reported by IVF (Bolling LC et al. 2003 Transgenics 4, 77–86). The aim of this study was to evaluate the efficiency of SMGT by IVF in pigs and the use of recombinase RecA to avoid possible exogenous DNA degradation by endonucleases. We designed a study with 3 experimental groups: (1) sperm incubated without exogenous DNA (control group), (2) sperm incubated with exogenous DNA (DNA group), and (3) sperm incubated with the complex RecA:DNA (RecA group). Ejaculates from mature boars were recovered and the seminal plasma was discarded to avoid detrimental effects on DNA binding. The spermatozoa were incubated with DNA or RecA-DNA and used as vectors for transferring linealized plasmid DNA [5.7 kb enhanced green fluorescent protein (EGFP)] into in vitro-matured porcine oocytes by IVF. Spermatozoa and oocytes were coincubated for 2 h in TALP medium; then, the fertilized oocytes were transferred into the culture drops with NCSU-23 medium. The binding of the DNA to the spermatozoa was confirmed by the use of enzymatic fluorescein-12-dUTP-labeled DNA and measured by flow cytometry. The total number of oocytes used was 584 (n = 59; n = 382; n = 143 for the 3 experimental groups, respectively). Embryos were examined for cleavage rate at 48 h after fertilization, and for embryo development at 144 h. Expression of EGFP in embryos was examined using a fluorescence inverted microscope. The results in our experiment showed that the coincubation of sperm with exogenous DNA induced a lower cleavage rate than when the RecA:DNA complex was used (DNA: 25.13 � 2.22 v. RecA: 41.26 � 4.13%, P < 0.05), and both no different from the control group (38.98 � 6.40). On the other hand, the production of blastocysts was similar in the 3 groups (Control: 21.74 � 8.79 v. DNA: 21.87 � 4.24 v. RecA: 15.25 � 4.72%) as well as the quality of the obtained embryos. The average number of cells per blastocyst was similar in the 3 groups (36.40 � 9.28 v. 37.26 � 3.32 v. 28.45 � 3.34, respectively). None of the produced embryos was detected for expressing protein EGFP. In conclusion, under our experimental conditions, IVF is not an effective technique for SMGT, whereas using ICSI-SMGT under the same conditions (DNA and DNA:RecA groups), we obtained a high percentage of transgenic embryos (Garcia-Vazquez FA et al. 2006 Reprod. Domest. Anim. 41, 338). Three main causes are hypothesized to be probably related to this conclusion: (i) the penetration of the oocytes is achieved only by the not DNA-bound viable spermatozoa in a competitive system, (ii) the DNA was only bound to altered membrane or dead spermatozoa, and (iii) the exogenous DNA is only present on sperm surface and in the process of fusion with oocyte membrane, the DNA is not internalized.


2006 ◽  
Vol 18 (2) ◽  
pp. 19 ◽  
Author(s):  
Marialuisa Lavitrano ◽  
Marco Busnelli ◽  
Maria Grazia Cerrito ◽  
Roberto Giovannoni ◽  
Stefano Manzini ◽  
...  

Since 1989, a new method for the production of transgenic animals has been available, namely sperm-mediated gene transfer (SMGT), based on the intrinsic ability of sperm cells to bind and internalise exogenous DNA molecules and to transfer them into the oocyte at fertilisation. We first described the SMGT procedure in a small animal model, with high efficiency reported in the mouse. In addition, we successfully adapted and optimised the technique for use in large animals; it was, in fact, highly efficient in the generation of human decay accelerating factor transgenic pig lines, as well as multigene transgenic pigs in which three different reporter genes, namely enhanced green fluorescent protein, enhanced blue fluorescent protein and red fluorescent protein, were introduced. The major benefits of the SMGT technique were found to be its high efficiency, low cost and ease of use compared with other methods. Furthermore, SMGT does not require embryo handling or expensive equipment. Sperm-mediated gene transfer could also be used to generate multigene transgenic pigs that would be of benefit as large animal models for medical research, for agricultural and pharmaceutical applications and, in particular, for xenotransplantation, which requires extensive genetic manipulation of donor pigs to make them suitable for grafting to humans.


Reproduction ◽  
2006 ◽  
Vol 131 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Augusta Zannoni ◽  
Marcella Spinaci ◽  
Chiara Bernardini ◽  
Maria Laura Bacci ◽  
Eraldo Seren ◽  
...  

Several reliable methods to produce transgenic animals utilize the male genome. After penetration into oocyte, sperm DNA undergoes dramatic conformational changes that could represent a great opportunity for exogenous DNA to be integrated in the zygote genome. Among the enzymes responsible for sperm remodeling, a nuclease could be involved. The presence of a DNase I in oocytes has not been much investigated. To date, an immunolocalization of DNase I has been reported only in rat immature oocytes and the presence of nuclease activities has been shown in avian oocytes. The present study was conducted to verify whether a DNase-I like activity is present in MII mature pig oocytes. To do this, oocyte extracts were assessed for nuclease activity by a plasmid degradation assay and by zymography; these analyses evidenced a 33 kDa, Ca2+/Mg2+ dependent DNase I-like activity that was inhibited by Zn2+. A further identification of DNase I was achieved by Western blot, immunofluorescence and RT-PCR experiments. Moreover, the presence of the enzyme activity was confirmed by the rapid degradation of exogenous DNA microinjected into the ooplasm. Finally, the exogenous DNA transferred to oocyte by spermatozoa during sperm mediated gene transfer in vitro fertilisation protocol seemed to be protected from DNase I degradation and to persist in the ooplasm till 6 h. These results, together with the high efficiency of sperm based transgenesis methods, suggest that the association with spermatozoa protects exogenous DNA from nuclease activities.


2007 ◽  
Vol 19 (1) ◽  
pp. 148 ◽  
Author(s):  
J. Li ◽  
Y.-H. Zhang ◽  
Y.-T. Du ◽  
P. M. Kragh ◽  
S. Purup ◽  
...  

Since the successful production of transgenic pigs by somatic nuclear transfer (Lai et al. 2002 Science 295, 1089–1092), more efficient reproduction technologies for transgenic pigs have been in demand. The purpose of our work was to develop an efficient method for production of transgenic embryos by handmade cloning (HMC; Vajta et al. 2001 Cloning 3, 89–95) connected to oriented enucleation to eliminate potential harm of staining and UV illumination at cytoplast selection. After 41–42 h of in vitro maturation, oocytes were further cultured with or without 0.4 µg mL−1 demecolcine for 45 min (i.e. chemically assisted handmade enucleation (CAHE) vs. oriented handmade enucleation (OHE)). Subsequently, the cumulus cells were removed and zonae pellucidae were partially digested. Oocytes with visible extrusion cones or polar bodies attached to the surface were subjected to oriented bisection. The putative cytoplasts without extrusion cones or polar bodies, containing the major part of cytoplasm, were selected as the recipients. Two cytoplasts were electro-fused with one transgenic fibroblast expressing either amyloid precursor protein (APP) or green fluorescent protein (GFP), while non-transgenic fibroblasts were used as control nuclear donors. After activation (Kragh et al. 2005 Theriogenology 64, 1536–1545; Du et al. 2005 Cloning Stem Cells 7, 199–205), reconstructed embryos were cultured in porcine zygote medium-3 for 7 days. The rates of cleavage and blastocyst cell numbers were recorded on Day 2 and Day 7, respectively. In 5 replicates, the correct bisection efficiency achieved with CAHE was higher compared to that with the OHE method (93 ± 1% vs. 82 ± 2%, respectively; P &lt; 0.05). Table 1 shows that blastocyst rates with APP and GFP transgenic fibroblasts as nuclear donors after CAHE were lower (P &lt; 0.05) compared to those with the OHE method; in contrast, cleavage rates of embryos from different fibroblast donors were similar and so were blastocyst rates of non-transgenic donors after either CAHE or OHE. Our results show that embryos reconstructed from APP and GFP transgenic donors have compromised in vitro developmental rates after CAHE rather than after the OHE method; however, a high efficiency with both enucleation methods was observed when using non-transgenic somatic cells. Table 1.Comparison of two enucleation methods for the production of transgenic pig embryos


2012 ◽  
Vol 24 (1) ◽  
pp. 232
Author(s):  
L. N. Moro ◽  
G. Vichera ◽  
D. Salamone

Transgenic animals have important applications in agriculture and human medicine; nevertheless the available techniques still remain inefficient and technically difficult. We have recently developed a novel method to transfect bovine embryos that consists of intracytoplasmic injection of exogenous DNA–liposome complexes (eDNA-LC) in IVF zygotes. This study was designed to evaluate the quality and viability of IVF bovine embryos, after intracytoplasmic injection of pCX-EGFP–liposome complexes (EGFP-LC) or pBCKIP2.8-liposome complexes (plasmid that codifies the human insulin gene, HI-LC). First, we evaluated embryo development and enhanced green fluorescent protein (EGFP) expression of IVF embryos injected with both plasmids separately. This treatment was analysed by Fisher's Exact test (P ≤ 0.05). Cleavage rates for EGFP-LC, HI-LC and IVF embryos injected with liposomes alone (IVF-L) and IVF control (IVF-C) were 62% (63/102), 67% (67/100), 66% (67/101) and 79% (98/124); blastocysts rates were 17% (17/102), 21% (21/100), 21% (21/101) and 23% (28/124), respectively. No statistical differences were seen among groups. The percentage of EGFP-positive embryos (EGFP+) after EGFP-LC injection was 42.9% after 3 days of culture and 41.8% at the blastocyst stage. In the second experiment, the blastocysts obtained, EGFP+ or EGFP-negative (EGFP–), were analysed by TUNEL assay at Day 6 (Bd6), 7 (Bd7) and 8 (Bd8) of in vitro culture, in order to evaluate the effect of the transgene and culture length, on DNA fragmentation. This treatment was analysed by the difference of proportions test (P ≤ 0.05) using statistical INFOSTAT software. All EGFP+ blastocysts showed TUNEL positive cells (T+). The percentage of T+ in Bd6, Bd7 and Bd8 were 91, 73.7 and 99.5%, respectively (P ≤ 0.05). EGFP– blastocysts showed lower fragmented nuclei (0, 44.6 and 85%, respectively; P ≤ 0.05). Groups IVF-L and IVF-C were also evaluated. In both groups, there was no evidence of DNA fragmentation in Bd6 and Bd7, but T+ were detected in Bd8 (66.4 and 85.8%, respectively; P ≤ 0.05). In the third experiment, bovine blastocysts obtained from the HI-LC group were individually transferred to recipient cows after 6 (n = 11), 7 (n = 5) and 8 (n = 5) days of culture post-IVF and HI-LC injection. The pregnancies obtained were from Bd6 [18.2% (2/11)] and Bd7 [40% (2/5)], although none of the recipients receiving Bd8 were diagnosed pregnant. Two pregnancies developed to term, one derived from Bd6 and the other from Bd7. Analysis by PCR determined that none of the born cows were transgenic. In summary, IVF bovine embryos could be easily transfected after the injection of eDNA-LC and the technique did not affect offspring viability. The results indicate that extended time in in vitro culture increases the percentage of fragmented nuclei in blastocysts. Moreover, this parameter increases in blastocysts with transgene expression compared with those without expression. Finally, more transfers are required in order to obtain the real efficiency of this new technique and to overcome the drawbacks generated by in vitro culture length and transgene expression.


2004 ◽  
Vol 48 (11) ◽  
pp. 4154-4162 ◽  
Author(s):  
Thomas Herget ◽  
Martina Freitag ◽  
Monika Morbitzer ◽  
Regina Kupfer ◽  
Thomas Stamminger ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) is a major human pathogen frequently associated with life-threatening disease in immunosuppressed patients and newborns. The HCMV UL97-encoded protein kinase (pUL97) represents an important determinant of viral replication. Recent studies demonstrated that pUL97-specific kinase inhibitors are powerful tools for the control of HCMV replication. We present evidence that three related quinazoline compounds are potent inhibitors of the pUL97 kinase activity and block in vitro substrate phosphorylation, with 50% inhibitory concentrations (IC50s) between 30 and 170 nM. Replication of HCMV in primary human fibroblasts was suppressed with a high efficiency. The IC50s of these three quinazoline compounds (2.4 ± 0.4, 3.4 ± 0.6, and 3.9 ± 1.1 μM, respectively) were in the range of the IC50 of ganciclovir (1.2 ± 0.2 μM), as determined by the HCMV green fluorescent protein-based antiviral assay. Importantly, the quinazolines were demonstrated to have strong inhibitory effects against clinical HCMV isolates, including ganciclovir- and cidofovir-resistant virus variants. Moreover, in contrast to ganciclovir, the formation of resistance to the quinazolines was not observed. The mechanisms of action of these compounds were confirmed by kinetic analyses with infected cells. Quinazolines specifically inhibited viral early-late protein synthesis but had no effects at other stages of the replication cycle, such as viral entry, consistent with a blockage of the pUL97 function. In contrast to epithelial growth factor receptor inhibitors, quinazolines affected HCMV replication even when they were added hours after virus adsorption. Thus, our findings indicate that quinazolines are highly efficient inhibitors of HCMV replication in vitro by targeting pUL97 protein kinase activity.


Zygote ◽  
2016 ◽  
Vol 25 (1) ◽  
pp. 85-97 ◽  
Author(s):  
María Elena Arias ◽  
Esther Sánchez-Villalba ◽  
Andrea Delgado ◽  
Ricardo Felmer

SummarySperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) orin vitrofertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 811-814 ◽  
Author(s):  
P Laneuville ◽  
W Chang ◽  
S Kamel-Reid ◽  
AA Fauser ◽  
JE Dick

Abstract Retroviral vectors containing the selectable bacterial gene for G418 resistance (neo) were used to demonstrate gene transfer into primary human bone-marrow progenitor cells. To obtain populations of cells in which a high proportion of cells were expressing the neo gene, several important modifications were made to earlier procedures. Cells from normal donors were infected in vitro, were exposed to high concentrations of G418 for two days in liquid culture to enrich for cells expressing the neo gene, and were plated in semisolid medium. Gene transfer and expression were detected in colonies arising from progenitors of granulocyte-macrophage and erythroid lineages. Survival curves indicated that a high proportion of progenitor cells, approaching 100%, were G418 resistant. Furthermore, addition of growth factors contained in 5637-conditioned medium to the bone marrow improved the recovery of G418-resistant progenitors twofold to threefold. In addition to these biological measurements of gene expression in progenitor cells, significant levels of neo-specific RNA, similar to the levels of RNA expression in the virus-producing fibroblast cell line, were detected in the bone marrow cells after preselection. These results demonstrate that retrovirus vectors can be used successfully to transfer genes at high efficiency into progenitor cells in the human blood-forming system.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3304-3315 ◽  
Author(s):  
Marti F.A. Bierhuizen ◽  
Yvonne Westerman ◽  
Trudi P. Visser ◽  
Wati Dimjati ◽  
Albertus W. Wognum ◽  
...  

Abstract The further improvement of gene transfer into hematopoietic stem cells and their direct progeny will be greatly facilitated by markers that allow rapid detection and efficient selection of successfully transduced cells. For this purpose, a retroviral vector was designed and tested encoding a recombinant version of the Aequorea victoria green fluorescent protein that is enhanced for high-level expression in mammalian cells (EGFP). Murine cell lines (NIH 3T3, Rat2) and bone marrow cells transduced with this retroviral vector demonstrated a stable green fluorescence signal readily detectable by flow cytometry. Functional analysis of the retrovirally transduced bone marrow cells showed EGFP expression in in vitro clonogenic progenitors (GM-CFU), day 13 colony-forming unit-spleen (CFU-S), and in peripheral blood cells and marrow repopulating cells of transplanted mice. In conjunction with fluorescence-activated cell sorting (FACS) techniques EGFP expression could be used as a marker to select for greater than 95% pure populations of transduced cells and to phenotypically define the transduced cells using antibodies directed against specific cell-surface antigens. Detrimental effects of EGFP expression were not observed: fluorescence intensity appeared to be stable and hematopoietic cell growth was not impaired. The data show the feasibility of using EGFP as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in hematopoietic cells, to select for the genetically modified cells, and to track these cells and their progeny both in vitro and in vivo.


2011 ◽  
Vol 23 (1) ◽  
pp. 263
Author(s):  
F. Pereyra-Bonnet ◽  
A. Gibbons ◽  
M. Cueto ◽  
R. Bevacqua ◽  
L. Escobar ◽  
...  

Microinjection of DNA into the male pronucleus is a commonly used method to generate transgenic animals. However, it is only moderately efficient in several species because it requires proper male pronuclear visualisation, which occurs only in a narrow window of time in mice. The cytoplasmic microinjection of exogenous DNA (eDNA) is an alternative method that has not been fully investigated. Our objective was to evaluate if cytoplasmic microinjection of eDNA is capable of producing genetically modified embryos. In vitro and in vivo derived sheep embryos were cytoplasmically microinjected with pCX-EGFP previously incubated (5 min in a PVP droplet) with oolemma-cytoplasm fragments obtained from donor oocytes by microsurgery. A control group using microinjected plasmid alone was included in the in vivo procedure. For in vitro microinjection, IVF embryos were microinjected with circular plasmid with promoter (50 or 500 ng μL–1) or without promoter (50 ng μL–1) at 6 h after fertilization. The IVF was performed following (Brackett and Olliphant 1975 Biol. Reprod. 12, 260–274) with 15 × 106 spermatozoa mL–1, and presumptive zygotes were cultured in SOF. The expression of enhance green fluorescent protein (EGFP) was determined under blue light. For in vivo microinjection, embryos from superovulated sheep (by standard procedures) were recovered and microinjected with 50 ng μL–1 of linearized plasmid without promoter at 12 h after laparoscopic insemination with frozen semen (100 × 106 spermatozoa per sheep). Plasmid without promoter was used to avoid any possible cytotoxic effect produced by EGFP expression. The microinjection of IVF embryos with 50 ng μL–1 of plasmid was the best condition to produce embryos expressing eDNA (n = 96; 46.9% cleaved; 12.2% blastocysts; 53.0 and 4.1% of green embryos and blastocysts, respectively). Variables between the groups with or without promoter IVF were not statistically different (Fisher test: P < 0.05); however, when 500 ng μL–1 was microinjected, no blastocysts were obtained. In the in vivo embryo production group, 111 presumptive zygotes were microinjected (n = 37; with plasmid alone) from 16 donor sheep (11.5 ± 4.0 corpora lutea; 8.4 ± 4.8 presumptive zygotes recovered; 74.3% recovery rate). The mean time from injection to cleavage was 18.0 ± 4.5 h, and the percentage of cleavage and damage (due to the embryo injection) were >70% and <10%, respectively. Fifty-eight good quality embryos were transferred into the oviducts of 19 surrogate ewes; 12 of them are pregnant (63.1%). The presence of green IVF embryos demonstrates that eDNA was transported to the nucleus after cytoplasmic injection. We believe that the multi-fold increase (50- to 100-fold) in plasmid concentration compared with that used by others was the key step to our successful cytoplasmic microinjection. Accordingly, the new/old methodology described in this study provides an easy DNA construct delivery system of interest for the implementation of early reprogramming events. In addition, results obtained in the near future using in vivo cytoplasmic microinjection with high concentrations of eDNA could revalidate this technique for producing genetically modified large animals.


Sign in / Sign up

Export Citation Format

Share Document