220 Exploring the use of mesenchymal stem cells for treatment of mastitis and metritis in cattle

2020 ◽  
Vol 32 (2) ◽  
pp. 238
Author(s):  
R. Singh ◽  
S. Saini ◽  
S. Ansari ◽  
S. Jamwal ◽  
D. Malakar

The present study was carried out to isolate mesenchymal stem cells (MSCs) from adipose tissue of cattle (Bos indicus), characterise them, and apply them for the treatment of mastitis and metritis in the cow. Cattle MSCs were isolated from adipose tissue near the loin region of cow. Isolated adipose tissue was subjected to enzymatic digestion using 2% collagenase with agitation at regular intervals. The cells obtained after digestion were resuspended in cell culture flasks containing growth enriched medium and cultured under standard culture conditions. Alkaline phosphatase staining was used as one of the parameters to confirm cultured putative MSCs. Bovine Ad-MSCs were further characterised using real time-PCR by amplification of MSC-specific markers: CD73, CD90, and CD105 as positive markers and CD34, CD45, and CD79a as negative markers. Immunocytochemistry showed the presence of CD73, CD90, and CD105 on the cell surface. Three groups-control (C), local (L), and intravenous (IV)-with 6 cows suffering from mastitis were taken in each group and subjected to MSC transplantation through local and intravenous routes. Control group animals were subjected to antibiotic treatment only. Similarly, another three groups were taken with 6 cows in each group suffering from metritis. Post-transplantation wound healing, tissue repair, and reduction in inflammation were monitored for 26 days, at different time intervals; that is, after Days 1, 3, 7, and 15. Blood samples were also collected from animals at the same time intervals for real time-PCR. A similar examination was also done in metritis groups along with the analysis of the reduction in turbidity of cervical fluid at the abovementioned time intervals. Real time-PCR was performed to determine relative expression of genes for proliferative factors, anti-inflammatory cytokines, and antimicrobial peptides on cells isolated from blood collected at different time intervals. Gene expression in the local group of mastitis subjected to MSC injection was significantly higher than that of the IV and control group. The somatic cell count declined in both local and IV groups compared with the control group. Whereas the expression of the same genes in the IV group of metritis was significantly higher than that of the local and control groups of cows. The turbidity of cervical fluid and mucus was reduced in the IV group compared with the local group. In conclusion, we demonstrated the healing potential of MSCs in a cow model via MSC injection. Promising results were obtained in curing mastitis in both local and IV groups, whereas healing in the case of metritis was significantly higher in the IV group compared with both the control and local groups of cows. The study indicates the potential use of MSc for treatment of mastitis and metritis in cattle through wound healing and decreasing microbial infection.

2021 ◽  
Vol 24 (8) ◽  
pp. 607-614
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Gholamhossein Hassanshahi ◽  
...  

Background: Due to their self-renewal and differentiation ability, the mesenchymal stem cells (MSCs) have been studied extensively. However, the MSCs lifespan is restricted; they undergo several divisions in vitro that cause several alternations in cellular features and relatively lessens their application. Thus, this study was aimed to assess the effect of platelet-derived microparticles (PMPs), a valuable source of proteins, microRNAs (miRNAs), and growth factors, on the expression of hTERT, c-MYC, p16, p53, and p21 as the most important aging and cell longevity genes alongside with population doubling time (PDT) of PMP-treated cells in comparison to a control group. Methods: Umbilical cord MSCs (UC-MSCs) were used in this study, whereby they reached a confluency of 30%. MSCs were treated by PMPs (50 µg/mL), and then, PDT was determined for both groups. Quantitative expression of hTERT, c-MYC, p16, p53, and p21 was examined through quantitative real-time PCR at various intervals (i.e. after five and thirty days as well as freezing-thawing process). Results: Our results demonstrated that the treated group had a shorter PDT in comparison to the control group (P<0.050). The real-Time PCR data also indicated that PMPs were able to remarkably up-regulate hTERT and c-MYC genes expression while down-regulating the expression of p16, p21, and p53 genes (P<0.050), especially following five days of treatment. Conclusion: According to these data, it appears that PMPs are a safe and effective candidate for prolonging the lifespan of UC-MSCs; however, further investigations are needed to corroborate this finding.


2017 ◽  
Vol 23 (3) ◽  
pp. 120
Author(s):  
R. Ada Bender ◽  
Aykan Yücel ◽  
Volkan Noyan ◽  
Aylin Gürpınar ◽  
Pınar Atasoy ◽  
...  

<p><strong>OBJECTIVE:</strong> The mesenchymal stem cell application to uterine healing scars may provide better tissue strength.<br /><strong>STUDY DESIGN:</strong> Hysterectomy was performed on rats, and the wound recovery as a result of primary suturing was evaluated as tissue stretching and the positive histopathological effects. The mesenchymal stem cells originating from the adipose tissue were used during the healing period of the wound and would differentiate to mesenchyme-originated cells present in intact tissue for an optimum level of healing.<br /><strong>RESULTS:</strong> The weights of non-incised uterine horns in the control group were found to be significantly higher than the weights of the incised uterine horns (z=2.52, p=0.012). In the experiment group, the weights of the incised uterine horns were found to be significantly higher than the non-incised uterine horns (z=2.527, p=0.012). In the control group, the non-incised uterine horns withstood the stretching test to a higher extent than the incised horns, and a significant difference was found between the stretching values (z=2.51, p=0.012). In the experiment group, the incised uterine horns withstood the stretching tests to a higher extent than the non-incised uterine horns; however, there was no significant difference between the stretching tests (z=1.540, p=0.123).<br /><strong>CONCLUSION:</strong> Adipose tissue-originated mesenchyme stem cells were observed to increase the tissue stretching during wound healing.<br /><br /></p>


2021 ◽  
Vol 28 ◽  
Author(s):  
Eui-Seung Jeong ◽  
Bo-Hyun Park ◽  
Sujin Lee ◽  
Jun-Hyeog Jang

Background: Diverse extracellular matrix (ECM) proteins physically interact with stem cells and regulate stem cell function. However, the large molecular weight of the natural ECM renders large-scale fabrication of a similar functional structure challenging. Objective: The objective of this study was to construct a low molecular weight and multifunctional chimeric form of recombinant ECM to stimulate mesenchymal stem cell (MSC) for tissue repair. We engineered Fibrillin-1PF14 fused to an elastin-like polypeptide to develop a new biomimetic ECM for stem cell differentiation and investigated whether this recombinant chimeric Fibrillin-Elastin fragment (rcFE) was effective on human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs). Methods: hTMSCs were grown in the medium supplemented with rcFE, then the effect of the protein was confirmed through cell adhesion assay, proliferation assay, and real-time PCR. Results: rcFE enhanced the adhesion activity of hTMSCs by 2.7-fold at the optimal concentration, and the proliferation activity was 2.6-fold higher than that of the control group (non-treatment rcFE). In addition, when smooth muscle cell differentiation markers were identified by real-time PCR, Calponin increased about 6-fold, α-actin about 9-fold, and MYH11 about 10-fold compared to the control group. Conclusion: Chimeric rcFE enhanced cellular functions such as cell adhesion, proliferation, and smooth muscle differentiation of hTMSCs, suggesting that the rcFE can facilitate the induction of tissue regeneration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Man Amanat ◽  
Anahita Majmaa ◽  
Morteza Zarrabi ◽  
Masoumeh Nouri ◽  
Masood Ghahvechi Akbari ◽  
...  

Abstract Background This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity. Methods Participants (4–14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR). Results There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen’s d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen’s d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (−1.0; 95%CI −1.31, −0.69) and control (β −0.72; 95%CI −1.18, −0.26; Cohen’s d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST −0.035 × 10-3; 95%CI −0.04 × 10-3, −0.02 × 10-3. PTR −0.045 × 10-3; 95%CI −0.05 × 10-3, −0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group. Conclusions The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes. Trial registration The study was registered with ClinicalTrials.gov (NCT03795974).


2021 ◽  
Vol 11 (7) ◽  
pp. 1327-1332
Author(s):  
Long Zhou ◽  
Kui Wang ◽  
Meixia Liu ◽  
Wen Wei ◽  
Liu Liu ◽  
...  

NF-κB activation and its abnormal expression are involved in the progression of glioma. miRNA plays a crucial role in bone diseases. The role of NF-κB is becoming more and more important. The purpose of this study is to explore the mechanism by how miR-1 regulates NF-κB signaling. C57 glioma mouse models were divided into osteoporosis (OP) group and control group. qPCR was used to measure miR-1 levels in OP and control mice. Bone marrow mesenchymal stem cells (BMSCs) were cultured and transfected with miR-1 specific siRNA to establish miR-1 knockout cell model followed by analysis of cell apoptosis, expression of NF-κB signaling molecules by western blot. qPCR results showed that miR-1 levels in OP mice were significantly reduced compared to control mice. A large number of siRNA particles were observed in transfected BMSCs under a fluorescence microscope. qPCR results showed that siRNA transfection significantly suppressed miR-1, indicating successful transfection. Flow cytometry revealed significant differences in cell apoptosis between miR-1 siRNA group and the NC group. Western blot indicated miR-1 promoted BMSCs differentiation via NF-κB mediated up-regulation of ALP activity. The expression of miR-1 is low in BMSCs of mice with glioma. In addition, BMSCs differentiation is enhanced by NF-κB activation via up-regulating miR-1.


2020 ◽  
Vol 10 (6) ◽  
pp. 868-873
Author(s):  
Shengxiang Huang ◽  
Haibo Mei ◽  
Rongguo He ◽  
Kun Liu ◽  
Jin Tang ◽  
...  

The α-calcitonin gene-related peptide (α-CGRP) regulates bone metabolism and has potential applications in enhancing bone remodeling in vivo. However, α-CGRP's role in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation remain unclear. Rat BMSCs were separated into control group, α-CGRP group and α-CGRP siRNA group, in which BMSCs were transfected with α-CGRP plasmid and α-CGRP siRNA respectively followed by analysis of α-CGRP level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, formation of calcified nodules by alizarin red staining, Smad1 and Smad7 level by Western blot and Runx2 by real time PCR. αCGRP transfection into BMSCs significantly up-regulated CGRP, which could promote cell proliferation, inhibit Caspase 3 activity, promote ALP activity, increase calcified nodules formation and upregulate Smad1, Smad7 and Runx2 compared to control (P < 0.05); transfection of αCGRP siRNA significantly down-regulated CGRP in BMSCs, inhibited cell proliferation, promoted Caspase 3 activity, inhibited ALP activity, inhibited calcified nodules formation and downregulate Smad1, Smad7 and Runx2 (P < 0.05). αCGRP overexpression promotes the Smad/Runx2 signaling, which in turn promotes BMSCs proliferation and osteogenesis. Decreased αCGRP level inhibits Smad/Runx2 signaling, promotes BMSCs apoptosis, inhibits proliferation and osteogenic differentiation.


2019 ◽  
Vol 9 (10) ◽  
pp. 1429-1434
Author(s):  
Qing Yang ◽  
Cheng Li ◽  
Manli Yan ◽  
Chunhua Fang

Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into different types of cells. SOX9 involves in the development and progression of various diseases. Our study aims to assess SOX9's effect on osteogenic differentiation of BMSCs and its related regulatory mechanisms. Rat BMSCs were isolated and randomly divided into control group, SOX9 group and SOX9 siRNA group, which was transfected with pcDNA-SOX9 plasmid or SOX9 siRNA respectively followed by analysis of SOX9 expression by Real time PCR, cell proliferation by MTT assay, Caspase3 and ALP activity, GSK-3β expression and Wntβ/Catenin Signaling pathway protein expression by Western blot, and expression of osteogenic genes Runx2 and BMP-2 by Real time PCR. Transfection of pcDNA-SOX9 plasmid into BMSCs significantly inhibited cell proliferation, promoted Caspase3 activity, decreased ALP activity and downregulated Runx2 and BMP-2, increased GSK-3β expression and decreased Wntβ/Catenin expression protein expression (P< 0.05). SOX9 siRNA transfection significantly promoted cell proliferation, inhibited Caspase3 activity, increased ALP activity and upregulated Runx2 and BMP-2, downregulated GSK-3β and increased Wntβ/Catenin expression. SOX9 regulates BMSCs proliferation and osteogenic differentiation through Wntβ/Catenin signaling pathway.


2016 ◽  
Vol 473 (4) ◽  
pp. 1111-1118 ◽  
Author(s):  
Nhu Thuy Trinh ◽  
Toshiharu Yamashita ◽  
Tran Cam Tu ◽  
Toshiki Kato ◽  
Kinuko Ohneda ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zun Chang Liu ◽  
Thomas Ming Swi Chang

Mesenchymal stem cells (MSCs) derived from bone marrow can secrete cytokines and growth factors and can transdifferentiate into liver cells. We transplanted polymeric membrane bioencapsulated MSCs into the spleens of 90% partial hepatectomized rats. This resulted in 91.6% recovery rates. This is compared to a recovery rate of 21.4% in the 90% hepatectomized rats and 25% in the 90% hepatectomized rats receiving intrasplenic transplantation of free MSCs. After 14 days, the remnant livers in the bioencapsulated MSCs group are not significantly different in weight when compared to the sham control group. From day 1 to day 3 after surgery, in the bioencapsulated MSCs group, the plasma HGF and IL-6 were significantly higher than those in the free MSCs group and control group (P<0.01); plasma TNF-αwas significantly lower (P<0.001). We concluded that the intrasplenic transplantation of bioencapsulated MSCs significantly increases the recovery rates of 90% hepatectomized rats. It is likely that the initial effect is from proliver regeneration factors followed later by the transdifferentiated hepatocyte-like cells. However, histopathological analysis and hepatocyte proliferation study will be needed to better understand the regenerative mechanisms of this result. This study has implications in improving the survival and recovery of patients with very severe liver failure due to hepatitis, trauma, or extensive surgical resection.


Sign in / Sign up

Export Citation Format

Share Document