A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil

Soil Research ◽  
2010 ◽  
Vol 48 (7) ◽  
pp. 569 ◽  
Author(s):  
L. van Zwieten ◽  
S. Kimber ◽  
A. Downie ◽  
S Morris ◽  
S. Petty ◽  
...  

The effect of a low mineral ash biochar on biomass production and nitrogen (N) uptake into plants was tested with wheat and radish in a Yellow Earth used for commercial vegetable production. The biochar had an acid neutralising capacity <0.5% CaCO3, a total C content of 75%, and a molar H/C ratio of 0.45, indicating stability due to its aromaticity. A pot trial was established under climate-controlled conditions. Five rates of N fertiliser (0, 17, 44, 88, 177 kg N/ha) were applied as urea in combination with 5 biochar rates (0, 1.1, 2.2, 4.4, 11% w/w). Analysis of biomass production revealed a significant biochar × N fertiliser interaction. In particular, increasing biochar concentrations improved biomass production in both crop species at lower N application rates. The highest biochar application rate resulted in significantly greater accumulation of NO3 –-N in the soil and lower NH4 +-N averaged across the 5 N application rates. The biochar also decreased available P, and significantly increased microbial activity measured using the fluorescein diacetate method. Increasing N fertiliser application resulted in greater accumulation of NO3 –-N with no changes to NH4 +-N averaged across the 5 biochar application rates. Nitrogen fertiliser application did not influence microbial activity or biomass C. The trial suggests that in some cropping systems, biochar application will enable reduced N fertiliser input while maintaining productivity.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Xiaoli Tan ◽  
Kefeng Han ◽  
Sheng Tang ◽  
...  

Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 158
Author(s):  
Huaiyuan Fu ◽  
Dandan Cui ◽  
Hong Shen

Nitrogen is an important element that affects the growth and yield of rice obviously. To explore the effects of nitrogen (N) on the growth of double-cropping rice, four consecutive trials were conducted in South China Agricultural University. Four N forms and five N application rates were set up. Rice N uptake, leaf anatomic structure, leaf fluorescence parameters and yield were studied. The results showed that rice leaf SPAD value and N content with urea treatment were the highest among 4 N forms at the heading and flowering stage. The order of rice yield and N use efficiency treated with different N forms were urea > ammonium sulfate > ammonium nitrate > sodium nitrate. The N application rate test showed that photochemical quantum efficiency and chemical quenching coefficient of rice leaves showed an inverted-V-type changing tendency with the highest value at 180 kg/hm2 N treatment. Treatment with less than 180 kg/hm2 N decreased the area and perimeter of small vascular bundles of the lateral leaves. Yield of early rice and later rice with 180 kg/hm2 urea treatment was 17.42 to 33.28% and 6.17 to 21.28% higher than those of other N levels, respectively. The above results suggested that 180 kg/hm2 of urea N are suitable and recommended for double-cropping rice planting in South China.


1980 ◽  
Vol 28 (4) ◽  
pp. 243-251
Author(s):  
L. Sibma ◽  
T. Alberda

In 3 trials with perennial ryegrass given N in the range 0-1000 kg/ha and from 3 to 28 times/yr, DM production, N uptake and NO3 content in relation to N application rates and cutting frequencies of herbage were compared. Higher N application rates increased the herbage yield more at longer growing periods than at higher cutting frequencies. N uptake was positively affected by the application rate and not or only slightly by the cutting frequency. Consistent with this, appreciably high N conc. (max. 5.4%) were found on av. in the herbage at high fertilizer N rates and frequent cutting than at lower rates and less frequent cutting (1.6%). NO3 content increased during the growing season, especially as the N application rate was higher and the growing periods longer. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1974 ◽  
Vol 14 (66) ◽  
pp. 38 ◽  
Author(s):  
DL Lloyd

Makarikari grass (Panicum coloratum var. makarikariense) cvs, 04634 and Bambatsi were fertilized with eight rates of urea (0-900 kg N ha-1 yr-1) under irrigation on a red earth at Toowoomba, and cut either 8-weekly or at full flower. Dry matter (D.M.) production increased linearly with N applications up to 450 kg ha-1 for both cultivars. Due to differences in growth rhythm between cultivars, 04634 produced higher total yields cut at full flower (29500 kg ha-1 yr-1) than at 8-weekly intervals (23100 kg ha-1 yr-1), whereas Bambatsi yielded similarly (23000 kg ha-1 yr-1) for the two cutting frequencies. Lower tissue N concentrations occurred at full flower than in 8-week growth for both cultivars (Q4634 -0.85 per cent to 1.08 per cent; Bambatsi-1.39 per cent to 1.55 per cent at 450 kg N ha-1). The N uptake by 04634 was the same for both cutting frequencies, but lower in Bambatsi cut at full flower. The association between N application rate, tissue N concentration and N uptake is outlined. The maximum efficiencies of both N use for D.M. production and per cent N recovery for 04634 and Bambatsi (55 and 35 kg D.M. per kg N applied; 40 and 60 per cent N recovery, respectively) were comparable with published values for other species. Increasing N application rates decreased the efficiency of D.M. production of both cultivars, decreased the per cent N recovery of Bambatsi, but had no effect on the per cent N recovery of 04634. In an extension of the Bambatsi study, the intrusion of spring ephemerals, mainly Bromus unioloides, did not reduce total D.M. production greatly and distributed it better through the growing season. Productivity of Bambatsi during mid-summer was not affected by prior weed competition in the spring.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 213 ◽  
Author(s):  
J. R. Condon ◽  
A. S. Black ◽  
M. K. Conyers

This study examined the influence of simulated urine solutions containing various KCl and urea-N rates on the formation of acidic subsurface layers in soil columns. A factorial design was implemented with application rates equivalent to 0, 21, 42, 63, and 84 g urea-N/m2 and 0, 12.5, 25, and 37.5 g KCl-K/m2. The addition of N caused the formation of acidic subsurface layers at depths between 0.02 and 0.10 m. The magnitude of the resultant net acidification and the depth of the most acidic layer increased with N rate. More acidification occurred at depth at the higher N rates due to the downward movement of NH4+-N. The inclusion of K in the simulated urine produced less acidity in the surface layers and more acidity at depth as the K application rate increased owing to competition between K+ and NH4+-N for exchange sites, allowing more NH4+-N to move to depth. The residual acidity in the soil at the completion of the experiment was found to be greater than the alkalinity of plant material. Therefore, acidic subsurface layers are likely to persist after plant death and decomposition. We also examined the impact of defoliation on the resultant pH profiles formed following simulated urine addition. Defoliation accentuated the magnitude of acidic subsurface layers, possibly due to changes in the rate of N uptake. The influence of defoliation was minor compared with the main effects of N addition.


2006 ◽  
Vol 16 (2) ◽  
pp. 286-293 ◽  
Author(s):  
Sean M. Westerveld ◽  
Mary Ruth McDonald ◽  
Alan W. McKeown

The Nutrient Management Act (NMA) established in the province of Ontario in 2002 has prompted a re-evaluation of nitrogen (N) management practices. However, N management research in Ontario is currently outdated. The experiment in this 3-year study was designed to establish the yield response of carrot (Daucus carota) to N fertilization on mineral and organic soils and identify the relative yield effects of preplant and residual soil N. In 2002, N was applied at 0%, 50%, 100%, 150%, and 200% of recommended N application rates in Ontario as ammonium nitrate (organic soil: 60 kg·ha-1 preplant; mineral soil: 110 kg·ha-1 split 66% preplant/33% sidedress). Experimental units were split in half in 2003 and 2004, and N was applied to one half in 2003 and both halves in 2004 to identify the effects of residual N from the previous season on yield. Crop stand, yield, and quality were assessed at harvest, and storability was assessed by placing carrots into cold storage for 6 months. Nitrogen application rate had no effect on the yield, quality, or storability of carrots grown on organic soil. On mineral soil there were no effects of applied N in the first year of the 3-year study. In the second and third year on mineral soil, yield increased in response to increasing N, up to 200% and 91% of the recommended application rate, respectively, based on the regression equations. Yield declined above 91% of the recommended application rate in the third year due to a decrease in stand at higher N application rates. There were no effects of N on carrot quality or storability on mineral soil. On mineral soil, residual N from the 2002 season had more effect on yield at harvest in 2003 than N applied in 2003. This major effect of residual soil N on yield provides an explanation for the lack of yield response to preplant N application in previous studies conducted in temperate regions. These results indicate that there is no single N recommendation that is appropriate for all years on mineral soil. Assessing the availability of N from the soil at different depths at seeding is recommended to determine the need for N application.


1996 ◽  
Vol 121 (1) ◽  
pp. 57-62 ◽  
Author(s):  
J.P. Syvertsen ◽  
M.L. Smith

Four-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on either the relatively fast-growing rootstock `Volkamer' lemon (VL) (C. volkameriana Ten. & Pasq.) or on the slower-growing rootstock sour orange (SO) (C. aurantium L.) were transplanted into 7.9-m3 drainage lysimeter tanks filled with native Candler sand, irrigated similarly, and fertilized at three N rates during 2.5 years. After 6 months, effects of N application rate and rootstock on tree growth, evapotranspiration, fruit yield, N uptake, and leaching were measured during the following 2 years. When trees were 5 years old, low, medium, and high N application rates averaged about 79,180, or 543 g N/tree per year and about 126,455, or 868 g N/tree during the following year. Recommended rates average about 558 g N/tree per year. A lysimeter tank with no tree and additional trees growing outside lysimeters received the medium N treatment. Nitrogen concentration in the drainage water increased with N rate and exceeded 10 mg·liter-1 for trees receiving the high rates and also for the no tree tank. Leachate N concentration and total N recovered was greater from trees on SO than from those on VL. Average N uptake efficiency of medium N rate trees on VL was 6870 of the applied N and 61 % for trees on SO. Nitrogen uptake efficiency decreased with increased N application rates. Trees outside lysimeters had lower leaf N and fruit yield than lysimeter trees. Overall, canopy volume and leaf N concentration increased with N rate, but there was no effect of N rate on fibrous root dry weight. Fruit yield of trees on SO was not affected by N rate but higher N resulted in greater yield for trees on VL. Rootstock had no effect on leaf N concentration, but trees on VI. developed larger canopies, had greater fibrous root dry weight, used more water, and yielded more fruit than trees on SO. Based on growth, fruit yield and N leaching losses, currently recommended N rates were appropriate for trees on the more vigorous VL rootstock but were 22% to 69 % too high for trees on SO.


Sign in / Sign up

Export Citation Format

Share Document