scholarly journals Carrot Yield, Quality, and Storability in Relation to Preplant and Residual Nitrogen on Mineral and Organic Soils

2006 ◽  
Vol 16 (2) ◽  
pp. 286-293 ◽  
Author(s):  
Sean M. Westerveld ◽  
Mary Ruth McDonald ◽  
Alan W. McKeown

The Nutrient Management Act (NMA) established in the province of Ontario in 2002 has prompted a re-evaluation of nitrogen (N) management practices. However, N management research in Ontario is currently outdated. The experiment in this 3-year study was designed to establish the yield response of carrot (Daucus carota) to N fertilization on mineral and organic soils and identify the relative yield effects of preplant and residual soil N. In 2002, N was applied at 0%, 50%, 100%, 150%, and 200% of recommended N application rates in Ontario as ammonium nitrate (organic soil: 60 kg·ha-1 preplant; mineral soil: 110 kg·ha-1 split 66% preplant/33% sidedress). Experimental units were split in half in 2003 and 2004, and N was applied to one half in 2003 and both halves in 2004 to identify the effects of residual N from the previous season on yield. Crop stand, yield, and quality were assessed at harvest, and storability was assessed by placing carrots into cold storage for 6 months. Nitrogen application rate had no effect on the yield, quality, or storability of carrots grown on organic soil. On mineral soil there were no effects of applied N in the first year of the 3-year study. In the second and third year on mineral soil, yield increased in response to increasing N, up to 200% and 91% of the recommended application rate, respectively, based on the regression equations. Yield declined above 91% of the recommended application rate in the third year due to a decrease in stand at higher N application rates. There were no effects of N on carrot quality or storability on mineral soil. On mineral soil, residual N from the 2002 season had more effect on yield at harvest in 2003 than N applied in 2003. This major effect of residual soil N on yield provides an explanation for the lack of yield response to preplant N application in previous studies conducted in temperate regions. These results indicate that there is no single N recommendation that is appropriate for all years on mineral soil. Assessing the availability of N from the soil at different depths at seeding is recommended to determine the need for N application.

Author(s):  
Laura L. Van Eerd ◽  
J. Mitchell MacFarlane ◽  
Inderjot Chahal

Nitrogen management is critical for sugarbeet (Beta vulgaris L.) because N inversely influences root yield and recoverable white sucrose per tonne (RWST). From 2015 to 2017 in Ontario the use of optical sensors (SPAD, Greenseeker) was evaluated as a method to guide N application and harvest date (late-September, late-October) selection by predicting root yield RWST and partial profit margins. In a commercial field, fertilizer N rate (4, 5) and cultivar (8, 12) were tested in a split block design experiment with three replications and two harvest dates. In all years, few cultivars (≤2) had a root yield response to applied N, which was attributed to high inherent soil fertility and limited our evaluation of optical sensors to adjust in-season N applications. The optimal N rate to maximize RWST and profits was 0 to 45 kg N ha-1 and confirmed their negative relationship to applied N. Optical sensor readings correlated negatively with RWST across the majority (>60%) of cultivars tested in mid-August and September. Across all cultivars, the regression model of optical sensors to predict RWST at early harvest was strongest (R2=0.48 for SPAD; 0.24 Greenseeker) when readings were taken in early September. Although future research to refine this relationship is needed, we recommend the use of optical sensors, particularly the SPAD meter, in early September to guide harvest selection to maximize RWST.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1332-1338 ◽  
Author(s):  
Sean M. Westerveld ◽  
Alan W. McKeown ◽  
Mary Ruth McDonald

An understanding of nitrogen (N) uptake and the partitioning of N during the season by the carrot crop (Daucus carota subsp. sativus [Hoffm.] Arkang.) is required to develop more efficient N fertilization practices. Experiments were conducted on both organic and mineral soils to track the accumulation of dry matter (DM) and N over the growing season and to develop an N budget of the crop. Treatments included two carrot cultivars (`Idaho' and `Fontana') and 5 N rates ranging from 0% to 200% of the provincial recommendations in Ontario. Foliage and root samples were collected biweekly from selected treatments during the growing season and assessed for total N concentration. Harvest samples were used to calculate N uptake, N in debris, and net N removal values. Accumulation of DM and N in the roots was low until 50 to 60 days after seeding (DAS) and then increased linearly until harvest for all 3 years regardless of the soil type, cultivar, and N rate. Foliage dry weight and N accumulation were more significant by 50 to 60 DAS, increased linearly between 50 and 100 DAS, and reached a maximum or declined slightly beyond 100 DAS in most cases. The N application rates required to maximize yield on mineral soil resulted in a net loss of N from the system, except when sufficient N was available from the soil to produce optimal yield. On organic soil, a net removal of N occurred at all N application rates in all years. Carrots could be used as an N catch crop to reduce N losses in a vegetable rotation in conditions of high soil residual N, thereby improving the N use efficiency (NUE) of the crop rotation.


2021 ◽  
Author(s):  
Keyu Ren ◽  
Minggang Xu ◽  
Rong Li ◽  
Lei Zheng ◽  
Shaogui Liu ◽  
...  

Abstract Optimal nitrogen (N) management is critical for efficient crop production and agricultural pollution control. However, it is difficult to implement advanced management practices on smallholder farms due to a lack of knowledge and technology. Here, using 35,502 on-farm fertilization experiments, we demonstrated that smallholders in China could produce more grain with less N fertilizer use through optimizing N application rate. The yields of wheat, maize and rice were shown to increase between 10% and 19% while N application rates were reduced by 15–19%. These changes resulted in an increase in N use efficiency (NUE) by 32–46% and a reduction in N surplus by 40% without actually changing farmers’ operational practices. By reducing N application rates in line with official recommendations would not only save fertilizer cost while increasing crop yield, but at the same time reduce environmental N pollution in China. However, making progress towards further optimizing N fertilizer use to produce more grain with less pollution would require managements to improve farmers’ practices which was estimated to cost about 11.8 billion US dollars to implement.


Author(s):  
Fen Gao ◽  
Yuanhong Chen ◽  
SeaRa Lim ◽  
Allen Xue ◽  
Bao-Luo Ma

Effective nitrogen (N) management strategies are important for ensuring a balance between optimizing plant growth and minimizing disease damage. A field experiment was conducted for three years to (i) assess the effects of N fertilizer application on the growth and seed yield of canola, and severities of Sclerotinia stem rot (SSR), and (ii) determine a reasonable N-rate for optimizing plant growth and minimizing the loss from SSR in eastern Canada. The experiment was designed with factorial combinations of eight N treatments and two canola hybrids. All N-treatments reduced canola emergence with increasing preplant N application rates above 100 kg ha–1, but had a positive impact on plant height, fresh weight, dry weight and seed yield. The development of SSR showed differential responses to N application rates. Of all the treatments, the split application (50 kg N ha–1 at preplant plus 100 kg N ha–1 side-dressed at the 6-leaf stage) increased canola growth, and often produced the highest or similar seed yields to those of equivalent N rate applied as preplant. At the 150 kg ha–1 N rate, no severe development of SSR was observed in either preplant-only or split application. Overall, this study demonstrates that the split-N management strategy (50+100 kg ha–1) maintained a balance between enhancing plant growth and mitigating the negative impacts of SSR on canola.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


2010 ◽  
Vol 19 (7) ◽  
pp. 961 ◽  
Author(s):  
Laura L. Bourgeau-Chavez ◽  
Gordon C. Garwood ◽  
Kevin Riordan ◽  
Benjamin W. Koziol ◽  
James Slawski

Water content reflectometry is a method used by many commercial manufacturers of affordable sensors to electronically estimate soil moisture content. Field‐deployable and handheld water content reflectometry probes were used in a variety of organic soil‐profile types in Alaska. These probes were calibrated using 65 organic soil samples harvested from these burned and unburned, primarily moss‐dominated sites in the boreal forest. Probe output was compared with gravimetrically measured volumetric moisture content, to produce calibration algorithms for surface‐down‐inserted handheld probes in specific soil‐profile types, as well as field‐deployable horizontally inserted probes in specific organic soil horizons. General organic algorithms for each probe type were also developed. Calibrations are statistically compared to determine their suitability. The resulting calibrations showed good agreement with in situ validation and varied from the default mineral‐soil‐based calibrations by 20% or more. These results are of particular interest to researchers measuring soil moisture content with water content reflectometry probes in soils with high organic content.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Vilhelmiina Harju ◽  
Ilkka Närhi ◽  
Marja Mattsson ◽  
Kaisa Kerminen ◽  
Merja H. Kontro

Views on the entry of organic pollutants into the organic matter (OM) decaying process are divergent, and in part poorly understood. To clarify these interactions, pesticide dissipation was monitored in organic and mineral soils not adapted to contaminants for 241 days; in groundwater sediment slurries adapted to pesticides for 399 days; and in their sterilized counterparts with and without peat (5%) or compost-peat-sand (CPS, 15%) mixture addition. The results showed that simazine, atrazine and terbuthylazine (not sediment slurries) were chemically dissipated in the organic soil, and peat or CPS-amended soils and sediment slurries, but not in the mineral soil or sediment slurries. Hexazinone was chemically dissipated best in the peat amended mineral soil and sediment slurries. In contrast, dichlobenil chemically dissipated in the mineral soil and sediment slurries. The dissipation product 2,6-dichlorobenzamide (BAM) concentrations were lowest in the mineral soil, while dissipation was generally poor regardless of plant-derived OM, only algal agar enhanced its chemical dissipation. Based on sterilized counterparts, only terbutryn appeared to be microbially degraded in the organic soil, i.e., chemical dissipation of pesticides would appear to be utmost important, and could be the first response in the natural cleansing capacity of the environment, during which microbial degradation evolves. Consistent with compound-specific dissipation in the mineral or organic environments, long-term concentrations of pentachloroaniline and hexachlorobenzene were lowest in the mineral-rich soils, while concentrations of dichlorodiphenyltrichloroethane (DTT) and metabolites were lowest in the organic soils of old market gardens. OM amendments changed pesticide dissipation in the mineral soil towards that observed in the organic soil; that is OM accelerated, slowed down or stopped dissipation.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 509B-509
Author(s):  
Robert H. Stamps

One of the most difficult times to balance crop nitrogen (N) requirements with concerns about nitrate-N leaching occurs during crop establishment, when root systems are poorly developed and not widely distributed in the growing medium. This dilemma can be exacerbated when producing a slow-growing plant such as leatherleaf fern (Rumohra adiantiformis [Forst.] Ching) on sandy soils in shadehouses in areas with significant rainfall. Rhizomes were planted in 36 drainage lysimeters containing Tavares fine sand located in a shadehouse. Nitrogen fertilizer was applied at nine rates using liquid and/or controlled-release fertilizer. Nitrogen application rates were varied as the rhizomes became established and spread into unplanted areas of the lysimeters. Irrigation and rainfall were monitored and the amount of water not lost to evapotranspiration was determined. Nitrogen (ammoniacal, nitrate/nitrite, total Kjeldahl) concentrations in leachate collected below the rootzone were determined. Stipe sap nitrate and frond total Kjeldahl nitrogen (TKN) were determined to try to develop a production monitoring technique. Initially, only leachate samples from controlled-release fertilizer plots treated at 21 and 42 kg of N/ha per year and liquid fertilizer at 28 kg of N/ha per year were consistently below the maximum contamination level (MCL) of 10 mg·L–1. As the fern became established, leachate nitrate/nitrite-N concentrations from higher N application rate treatments also remained below the MCL. Leachate N concentrations decreased as rainfall increased. Fern growth increased with increasing N application rate. Stipe sap nitrate-N and frond TKN concentrations were not well-correlated during establishment.


2019 ◽  
Vol 70 (4) ◽  
pp. 373 ◽  
Author(s):  
Lihua Huang ◽  
Zhengwei Liang ◽  
Donald L. Suarez ◽  
Zhichun Wang ◽  
Mingming Wang

The effect of nitrogen (N) application on seed yields and yield components in Leymus chinensis (Trin.) Tzvel., a perennial rhizomatous grass, was measured in a field experiment with two saline-sodic soils at Da’an Sodic Land Experiment Station during 2010–11. Two grassland field sites were classified as moderately saline–sodic (MSSL) and severely saline–sodic (SSSL). Application rates of N at each site were 0, 30, 60, 90, 120, 150, 180 and 210 kg ha–1. Application of N significantly improved seed yield mainly through increased spike number (R2 = 0.96, P ≤ 0.001). Compared with nil N, seed yield increased 7.4–10.9 times with N application of 150 kg ha–1 at MSSL, and 5.3–7.5 times with N application of 120 kg ha–1 at SSSL. However, absolute increases at SSSL were relatively small. Some significant differences (P ≤ 0.01) in seed yield occurred between 2010 and 2011 with different N application rates in the same soil, and between MSSL and SSSL in the same year. Increasing N application rate significantly decreased N physiological efficiency (NPE) but increased N apparent-recovery fraction (NRF) and N partial-factor productivity (NPP) at both sites. Seed yield and NPP indicated that the optimal N application rates to increase yield were 150 kg ha–1 at MSSL and 120 kg ha–1 at SSSL. High soil pH was the major factor adversely impacting seed yield, and pH and soil salinity were major factors negative affecting NPE, NRF and NPP as well as decreasing the positive effect of N application. Nitrogen application is a practical and effective method to increase seed yield of L. chinensis in saline-sodic grasslands of Northeast China, particularly when soil pH and salinity are not limiting.


1980 ◽  
Vol 60 (4) ◽  
pp. 641-650 ◽  
Author(s):  
JAMES A. CAMPBELL

Many measurements of oxygen flux in mineral soils have been reported; however, few such measurements have been made in organic soil. Almost all reported measurements of oxygen flux are at constant applied voltage, despite criticism of this technique, possibly due to the complexity of existing techniques for measuring oxygen flux at effective voltage. Equipment suitable for measuring oxygen flux at applied and effective voltage in organic soil was designed, and simplified techniques were developed and tested. As reported for mineral soils, soil resistance is relatively constant spatially and with depth in individual soils. Limited poisoning of the platinum electrode surface occurred after long periods of time and, contrary to previous assumptions, cannot be detected by erratic readings. Unlike mineral soil, the amperage-voltage slopes are constant over a wide range of organic soils, simplifying the technique for estimating oxygen flux at constant effective volatage. Comparison of simultaneous measurements of oxygen flux at constant and effective voltage indicates that oxygen flux measurements at effective voltage were twice those at applied voltage and strongly correlated (r2 = 0.96, n = 22).


Sign in / Sign up

Export Citation Format

Share Document