Crop residue ashes reduce leaching, persistence and bioavailability of sulfosulfuron and pretilachlor used in the succeeding crop

Soil Research ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 551 ◽  
Author(s):  
Anup Kumar ◽  
Neera Singh

Ash produced during burning of crop biomass may affect the behaviour of herbicides applied in the crops sown after burning. Therefore, the effect of wheat straw ash (WSA) on pretilachlor and rice straw ash (RSA) on sulfosulfuron leaching, degradation and bioactivity in soils was studied. Both ash types reduced downward mobility of respective herbicides, but the effect varied with soil type and dose of ash. Effect was greater in the sandy loam soil because masking of ash was observed in the clay loam soil. Pretilachlor degradation studies indicated that the WSA enhanced degradation and effect was greater in the flooded soil where 0.2% ash reduced the half-life (t1/2) by nearly half, whereas increasing the ash content to 0.5% slightly increased the t1/2 values. The effect of RSA on sulfosulfuron degradation was significant in the sandy loam soil. A pot culture study in wheat also confirmed these results. The effect of the WSA on the bioavailability of sulfosulfuron was assayed by observing its effect on mustard seedlings and results suggested that even 0.1% WSA reduced herbicide availability. Burning of crop residues on field is a major concern due to air pollution, but also affects the fate of soil-applied herbicides. Our study has implications in assaying the role of crop ashes on pesticide fate in soils where crop residues are burned regularly.

2018 ◽  
Vol 69 (6) ◽  
pp. 606 ◽  
Author(s):  
Yaseen Khalil ◽  
Kadambot H. M. Siddique ◽  
Phil Ward ◽  
Colin Piggin ◽  
Sze How Bong ◽  
...  

Three experiments were conducted to develop a bioassay method for assessing the bioavailability of prosulfocarb, pyroxasulfone and trifluralin in both crop residue and soil. In preliminary experiments, Italian ryegrass (Lolium multiflorum Lam.), cucumber (Cucumis sativus L.) and beetroot (Beta vulgaris L.) were tested as bioassay plant species for the three pre-emergent herbicides. Four growth parameters (shoot length, root length, fresh weight and dry weight) were measured for all plant species. Shoot-length inhibition was identified as the most responsive to the herbicide application rates. Italian ryegrass was the most sensitive species to all tested herbicides, whereas beetroot and cucumber had lower and similar sensitivity to shoot inhibition for the three herbicides. The bioassay species performed similarly in wheat and canola residues collected a few days after harvest. In bioassay calibration experiments, dose–response curves were developed for prosulfocarb, pyroxasulfone and trifluralin in a sandy loam soil typical of the grain belt of Western Australia and with wheat residue. The developed bioassay uses ryegrass shoot inhibition for relatively low suspected concentrations of herbicide, and cucumber shoot inhibition for higher rates. The bioassay was validated by spraying the three herbicides separately onto wheat residue and soil and comparing the concentrations derived from chemical analysis with those from the bioassay. All of the linear correlations between concentrations derived from chemical analyses and the bioassays were highly significant. These results indicate that the bioassay calibration curves are suitable for estimating herbicide concentrations in crop residue collected soon after harvest and a sandy-loam soil, low in organic matter.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 731-738 ◽  
Author(s):  
Roland Harrison ◽  
Sharon Ellis ◽  
Roy Cross ◽  
James Harrison Hodgson

2020 ◽  
pp. 1-5 ◽  
Author(s):  
Leanne Ejack ◽  
Joann K. Whalen ◽  
Chandra A. Madramootoo

Conservation tillage and crop residues should increase the soluble organic carbon and nitrate concentration in agricultural soil, which increases the denitrification potential. Basal denitrification (72 h laboratory incubation) was 2.1–2.7 times higher in a sandy loam soil under 15 yr of conservation tillage than conventional tillage and 1.8–2.0 times higher with high-residue (additional input 8.6–9.4 Mg dry matter·ha−1·yr−1) than low-residue inputs. Adding glucose and nitrate increased the soil denitrification potential 3- to 14-fold. Denitrification was limited by carbon availability, even in soil with 15 yr of conservation tillage and high-residue inputs.


1993 ◽  
Vol 7 (1) ◽  
pp. 29-32
Author(s):  
Birhanu Kinfe ◽  
Thomas F. Peeper

Persistence of BAY SMY 1500 and chlorsulfuron during storage for 0 to 6 mo at room temperature in air-dry clay loam soil with pH 7.6 and sandy loam soil with pH 6.6 was determined with conventional wheat bioassay procedures. BAY SMY 1500 had predicted half-lives greater than 6 mo in both soils. Half-lives of chlorsulfuron were 6.0 and 3.2 mo in the clay loam soil and sandy loam soil, respectively.


2019 ◽  
Vol 65 (No. 2) ◽  
pp. 97-103
Author(s):  
Marek Kołodziejczyk ◽  
Andrzej Oleksy ◽  
Bogdan Kulig ◽  
Andrzej Lepiarczyk

The cultivation of plants under the covers made of synthetic polymers brings many benefits, however, it is associated with the need to utilize or recycle these materials after the period of their use. Such problems are not caused by the covers made of natural polymers. The aim of the study carried out in the years 2013–2014 was to determine an effect of covers made of biopolymers and synthetic polymers on thermal conditions and potato yield. Field study was carried out under sandy loam and silty clay loam soils conditions. The temperature of silty clay loam soil under the covers was on average by 2.9°C higher than in the unprotected area, whereas sandy loam soil had the temperature higher by 2.5°C under biodegradable foil and by 2.7°C under standard foil. Temperature increase under non-woven fabrics was lower than under foils. The highest increase in marketable tuber yield after 40 days from emergence and in full maturity of potato plants was found after at application of standard non-woven fabric P17 (7.2 and 7.4 t/ha, respectively) and the lowest, i.e., 3.0 and 3.4 t/ha, respectively, under biodegradable foil. Cover type had no effect on the number of tubers formed on the first harvest date, whereas a significantly higher number of tubers was recorded in the full maturity of plants in the year characterized by a longer growing period of potato under non-woven P17 on sandy loam soil, and under biodegradable foil on silty clay loam soil conditions. A significant influence of cover on the average tuber weight on the first harvest date was found only on sandy loam soil under non-woven fabrics in 2013, as compared to full maturity of plants under biodegradable covers on sandy loam soil in 2013 and on silty clay loam soil under all covers in 2014.


2014 ◽  
Vol 28 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Eric P. Westra ◽  
Dale L. Shaner ◽  
Philip H. Westra ◽  
Phillip L. Chapman

Pyroxasulfone dissipation and mobility in the soil was evaluated and compared toS-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those ofS-metolachlor ranged from 39 to 63 d. Between years, herbicide DT50values were similar under the Nunn fine clay loam soil. Under the Olney fine sandy loam soil, dissipation in 2009 was minimal under dry soil conditions. In 2010, under the Olney fine sandy loam soil,S-metolachlor and pyroxasulfone had half-lives of 39 and 47 d, respectively, but dissipation rates appeared to be influenced by movement of herbicides below 30 cm. Herbicide mobility was dependent on site-year conditions, in all site-years pyroxasulfone moved further downward in the soil profile compared toS-metolachlor.


2015 ◽  
Vol 7 (2) ◽  
pp. 700-708 ◽  
Author(s):  
Sandeep Sharma ◽  
Jatinder Kaur ◽  
H. S. Thind ◽  
Yadvinder Singh ◽  
Neha Sharma ◽  
...  

Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. Soil microbial indices like microbial biomass and microbial activity are important criteria for the determination of soil quality. Laboratory incubation study was undertaken to examine the influence of eight crop residues widely varying in biochemical composition on the periodic changes in important soil microbial indices {(microbial (Cmic: Corg), metabolic (qCO2), carbon mineralization (qC) and microbial biomass change rate (qM) quotients)} at 28 days and 63 days after incubation (DAI) in a sandy loam soil. A. sativa amended soil showed maximum soil respiration rate (14.23 mg CO2-C g-1 soil day-1) whereas T. aestivum amended soil showed maximum microbial biomass C (790 µg/g). The metabolic quotient among different crop residues ranged from 11.1 to 19.8 μg CO2-C μg-biomass-C-1 h-1 at 63 DAI. The results indicate that incorporation of different crop residues has positive effect on microbial flora and their activity. Microbial quotient (Cmic:Corg) was significantly positively correlated with microbial biomass carbon (MBC), qC and qM. The study suggests that the biochemical composition of different crop residues seems to be of better option for long term sustainable crop production with maintenance of soil quality in a sandy loam soil.


1987 ◽  
Vol 65 (10) ◽  
pp. 2084-2089 ◽  
Author(s):  
A. B. Filonow ◽  
D. K. Arora

The influence of soil matric potential (ψm) on 14C exudation from labeled fungal propagules incubated in two soils over 5 days was determined, using tensiometers set at 0, −50, −100, and −200 mbar ψm (1 bar = 100 kPa). In general, 14C exudation to soil (as a percent of initial label) tended to be greatest at 0 mbar and decreasing ψm. In a sandy loam soil, the range of 14C exudation from conidia of Bipolaris victoriae or sclerotia of Macrophomina phaseolina was 18.4–20.9 or 4.4–5.5% at 0 mbar. At −200 mbar, it was 5.5–6.0 or 1.2–1.7%, respectively. In a clay loam soil at 0 mbar, conidia of B. victoriae or B. sorokiniana lost 17.6–19.9 or 7.3–9.2%, respectively, of total 14C label as exudate. At −200 mbar 14.6 or 5.9–7.2% was lost, respectively. Sclerotia of M. phaseolina lost 5.1–5.7% 14C-labeled exudate to the clay loam soil at 0 mbar and 4.3–4.6% at −200 mbar. 14C exudation at ψm less than saturation was about 2–3 times greater in the clay loam soil than in the sandy loam soil. Calculated ratios of evolved 14CO2/total 14C-labeled exudate were lowest at 0 mbar and increased as ψm decreased, suggesting that oxygen availability and soil water content as regulated by ψm were related to soil respiratory utilization of exudate.


Weed Science ◽  
1972 ◽  
Vol 20 (2) ◽  
pp. 180-183 ◽  
Author(s):  
R. J. Burr ◽  
W. O. Lee ◽  
A. P. Appleby

Under greenhouse conditions activated carbon, applied as a slurry at the time of seeding, protected Italian ryegrass(Lolium multiflorumLam.) seedlings from the toxicity of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) applied preemergence. Plants growing from seeds planted 1.3 cm deep received less protection from diuron than plants growing from seeds planted 0.6, 1.9, or 2.5 cm deep. Sandy loam soil required at least three times more activated carbon than a clay loam soil to obtain the same protection. Activated carbon applied at 130 kg/ha in a 2.5-cm band on the soil surface directly over the seeds provided adequate protection on a clay loam soil. On a sandy loam soil the 130-kg/ha rate was not adequate. Wetting agents added to aid in carbon wetting reduced the protective effect of activated carbon when added at 0.9 or 2.7% (v/v) but had only a slight effect on protection when added at 0.3% (v/v). The soil moisture level at the time of carbon application and the amount of subsequent irrigation did not influence the protection obtained with activated carbon.


Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1626-1631 ◽  
Author(s):  
Norm Dart ◽  
Chuanxue Hong ◽  
William Tyler Bradley

Boxwood blight caused by Calonectria pseudonaviculata results in severe defoliation and dieback to boxwood (Buxus spp.). The pathogen was first described in the United Kingdom and New Zealand in the mid to late 1990s and has since spread throughout Europe and most recently to the United States and Canada. While many Calonectria spp. have an epidemiologically significant soil phase, little is known of the role of the soil phase of C. pseudonaviculata in the epidemiology of boxwood blight. We optimized a leaf disc bioassay for detecting and quantifying this pathogen in soil and compared this bioassay with a standard soil plating assay originally developed for quantifying Calonectria using a Suffolk sandy-loam soil. Additionally, the sensitivity of both assays was compared among three distinct soil types (sand-loam, silt-loam, and sand-peat potting media). The optimal incubation time for baiting C. pseudonaviculata from soil using the leaf disc bioassay was 96 h. The optimal soil moisture for the bioassay was 1,000% of field capacity (flooded with 3 to 5 mm water). The leaf disc bioassay was able to detect C. pseudonaviculata at levels as low as 1 microsclerotium/ g soil while the soil plating bioassay was unable to detect the pathogen below inoculum levels of 10 microsclerotia/g soil in the Suffolk sandy-loam soil. Soil type had a significant impact on the sensitivity of both assays.


Sign in / Sign up

Export Citation Format

Share Document