272. Signalling pathways involved in mouse GDF9 and BMP15 stimulated thymidine uptake by rat granulosa cells

2008 ◽  
Vol 20 (9) ◽  
pp. 72
Author(s):  
K. L. Reader ◽  
C. J. McIntosh ◽  
J. L. Juengel

The oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are essential for ovarian follicular growth and development. Understanding the molecular mechanisms of these factors could assist with the development of future products for fertility control. Thymidine uptake by rat granulosa cells is stimulated cooperatively by GDF9 and BMP15. Inhibitors of the activin receptor-like kinase (ALK) 4,5,7 and the nuclear factor kappaB (NFKB) second messenger pathways block ovine GDF9 and BMP15 stimulated thymidine incorporation. The ALK 4,5,7 receptor pathway is known to be essential for the cooperative effects of mouse (m)GDF9 and mBMP15 on thymidine incorporation but the role of other pathways has yet to be determined, which was the focus of this study. Inhibitors of NFKB (Sn50; 10µg/mL), ALK 2,3,6 receptor (Dorsomorphin; 1µM), p38 mitogen-activated protein kinase (p38 MAPK; SB239063; 5 µM) and c-Jun-N-terminal kinase (JNK; TAT-TI-JIP153–163; 5 µM) pathways were each cultured with recombinant mGDF9 (25 ng/mL) and mBMP15 (6 ng/mL) in a rat granulosa cell [3H]-thymidine bioassay. The p38 MAPK inhibitor caused partial inhibition of thymidine uptake but this appeared to be non-specific as a similar level of suppression was observed in the control cultures. Neither the ALK 2,3,6 receptor nor the NFKB pathway inhibitors had any effect on mGDF9 and mBMP15 stimulated thymidine uptake. The JNK inhibitor showed a 1.7-fold increase in stimulation above the mGDF9 and mBMP15 effect (P < 0.01) but a similar stimulation was also observed in some controls. This differs from the results observed with ovine GDF9 and BMP15 where thymidine uptake was completely blocked by the NFKB inhibitor and the JNK inhibitor had no effect. In conclusion, the molecular mechanisms of GDF9 and BMP15 function are dependent on the species of origin of the growth factor and therefore caution is needed when extrapolating findings from one species to another.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Brandon M Proctor ◽  
Anthony J Muslin

Neointima formation frequently occurs after arterial injury and is responsible for substantial human morbidity. We previously demonstrated that the intracellular linker protein Grb2 is required for neointima formation, and that Grb2 regulates p38α mitogen-activated protein kinase (MAPK) activation in vascular smooth muscle cells (SMCs). In this work, the role of p38α MAPK in neointima formation was examined. In vitro experiments showed that pharmacological inhibition of p38 MAPK activity in cultured SMCs blocked platelet-derived growth factor (PDGF)-stimulated DNA replication and cell proliferation. Specifically, in control SMCs, overnight stimulation with PDGF induced an 11.8-fold increase in thymidine incorporation and a 1.9 fold increase in cell number. However, inhibition of p38 MAPK activity reduced PDGF-induced thymidine incorporation to 2.8-fold (P = 0.0006) and completely blocked PDGF-stimulated cell proliferation (P = 0.0001). Also, p38 MAPK activity was required for PDGF-induced inactivation of the retinoblastoma tumor suppressor protein, Rb, and induction of mini-chromosome maintenance protein-6 (MCM6), a fundamental regulator of DNA replication. Next, compound transgenic mice were generated with doxycycline (Dox)-inducible, SMC-specific expression of a dominant-negative form of p38α MAPK (SMC-DN-p38α ). Dox induced robust expression of DN-p38α mRNA and protein in the aorta and carotid arteries of compound transgenic mice, and inactivation of native, arterial p38 MAPK. SMC-DN-p38α and single transgenic, control mice were subjected to carotid injury by use of an epoxy resin-beaded probe. After 21 days, control mice developed robust neointima formation that frequently resulted in an occlusive lesion with a mean neointima/media ratio of 2.62 (N = 8). In contrast, SMC-DN-p38α mice were resistant to the development of neointima. Specifically, neointima/media ratio was reduced to 0.63 for SMC-DN-p38α mice (N = 12; P = 0.045). In addition, compared to control mice, injured carotid arteries of SMC-DN-p38α mice showed defective p38 MAPK activation in SMCs of the tunica media. Our results demonstrate that vascular SMC p38α MAPK is required for neointima formation after arterial injury.


Open Biology ◽  
2013 ◽  
Vol 3 (6) ◽  
pp. 130067 ◽  
Author(s):  
Gopal P. Sapkota

The signalling pathways downstream of the transforming growth factor beta (TGFβ) family of cytokines play critical roles in all aspects of cellular homeostasis. The phosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) has been implicated in TGFβ-induced epithelial-to-mesenchymal transition and apoptosis. The precise molecular mechanisms by which TGFβ cytokines induce the phosphorylation and activation of p38 MAPK are unclear. In this study, I demonstrate that TGFβ-activated kinase 1 (TAK1/MAP3K7) does not play a role in the TGFβ-induced phosphorylation and activation of p38 MAPK in MEFs and HaCaT keratinocytes. Instead, RNAi -mediated depletion of MAP3K4 and MAP3K10 results in the inhibition of the TGFβ-induced p38 MAPK phosphorylation. Furthermore, the depletion of MAP3K10 from cells homozygously knocked-in with a catalytically inactive mutant of MAP3K4 completely abolishes the TGFβ-induced phosphorylation of p38 MAPK, implying that among MAP3Ks, MAP3K4 and MAP3K10 are sufficient for mediating the TGFβ-induced activation of p38 MAPK.


2010 ◽  
Vol 429 (3) ◽  
pp. 403-417 ◽  
Author(s):  
Ana Cuadrado ◽  
Angel R. Nebreda

The p38 MAPK (mitogen-activated protein kinase) signalling pathway allows cells to interpret a wide range of external signals and respond appropriately by generating a plethora of different biological effects. The diversity and specificity in cellular outcomes is achieved with an apparently simple linear architecture of the pathway, consisting of a core of three protein kinases acting sequentially. In the present review, we dissect the molecular mechanisms underlying p38 MAPK functions, with special emphasis on the activation and regulation of the core kinases, the interplay with other signalling pathways and the nature of p38 MAPK substrates as a source of functional diversity. Finally, we discuss how genetic mouse models are facilitating the identification of physiological functions for p38 MAPKs, which may impinge on their eventual use as therapeutic targets.


Reproduction ◽  
2011 ◽  
Vol 142 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Karen L Reader ◽  
Derek A Heath ◽  
Stan Lun ◽  
C Joy McIntosh ◽  
Andrea H Western ◽  
...  

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted factors known to be involved in regulating the proliferation and differentiation of granulosa cells during follicular growth. The aims of this study were to determine the signalling pathways used by recombinant forms of murine and ovine GDF9 and BMP15 in combination (GDF9+BMP15) and the molecular complexes formed by combinations of these factors. Differences in the molecular forms of combinations of murine and ovine GDF9+BMP15 were observed by western blot analysis. Ovine GDF9+BMP15-stimulated 3H-thymidine uptake was completely blocked by SMAD2/3 and nuclear factor-κB pathway inhibitors and partially blocked by a p38-mitogen-activated protein kinase (MAPK) inhibitor. Thymidine uptake by murine GDF9+BMP15 was reduced by the SMAD2/3 and extracellular signal-regulated kinase-MAPK pathway inhibitors and increased after addition of a c-Jun N-terminal kinase inhibitor. Stimulation of 3H-thymidine uptake by GDF9+BMP15 from either species was not affected by the SMAD1/5/8 pathway inhibitor. In conclusion, both murine and ovine GDF9+BMP15-stimulated thymidine incorporation in rat granulosa cells was dependent on the SMAD2/3 signalling pathway but not the SMAD1/5/8 pathway. Divergence in the non-SMAD signalling pathways used by murine and ovine GDF9+BMP15 was also evident and may be due to the differences observed in the molecular complexes formed by these factors. These results are consistent with the hypothesis that the disparate cooperative functions of GDF9 and BMP15 in different species are mediated by divergent non-SMAD signalling pathways.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Carol O’Callaghan ◽  
Liam J. Fanning ◽  
Orla P. Barry

p38δmitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δMAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δMAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δMAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δMAPK activity. We outline a role for p38δMAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δMAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δMAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δMAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.


2009 ◽  
Vol 30 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Eriko Ohnishi ◽  
Toshiyasu Goto ◽  
Atsushi Sato ◽  
Mi-sun Kim ◽  
Shun-ichiro Iemura ◽  
...  

ABSTRACT Nemo-like kinase (NLK) is known to function as a mitogen-activated protein kinase (MAPK)-like kinase. However, the upstream molecules and molecular mechanisms that regulate NLK activity remain unclear. In the present study, we identified p38 MAPK as an upstream kinase and activator of NLK. p38 regulates the function of NLK via phosphorylation, and this modification can be abrogated by depletion of endogenous p38. In Xenopus laevis embryos, depletion of either p38β or NLK by antisense morpholino oligonucleotides results in a severe defect in anterior development and impaired expression of endogenous anterior markers. It is notable that morphants of Xenopus p38α, another isoform of the p38 MAPK family, exhibited no obvious defects in anterior development. Defects in head formation or in the expression of anterior marker genes caused by suppression of endogenous p38β expression could be rescued by expression of wild-type NLK but not by expression of mutant NLK lacking the p38β phosphorylation site. In contrast, defects in head formation or in the expression of anterior marker genes caused by suppression of endogenous NLK expression could not be rescued by expression of p38. These results provide the first evidence that p38 specifically regulates NLK function, which is required for anterior formation in Xenopus development.


2009 ◽  
Vol 201 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Danielle Brown ◽  
Amiya P Sinha Hikim ◽  
Ekaterina L Kovacheva ◽  
Indrani Sinha-Hikim

As a prerequisite for studies using mutant mice, we established a mouse model for investigating the molecular mechanisms by which testosterone (T) promotes muscle growth. Groups of six adult male mice (C57BL/6) received one of the following treatments: 1) vehicle (sterile distilled water; normal control) and 2) GnRH antagonist with empty (sham control) or 2 cm T- filled implant. Mice were killed 2, 6, and 8 weeks after treatment. T treatment for 8 weeks resulted in a significant (P<0.001) increase in fiber area of gastrocnemius muscles. T-induced fiber-hypertrophy was accompanied by up-regulation of the Notch ligand Delta 1 and activation of Notch signaling, as evidenced by increase in activated forms of Notch 1 and Notch 2. Consistent with this, we also observed an increase in the number of proliferating cell nuclear antigen (PCNA)-positive nuclei in muscles of T-treated mice, indicating that activation of Notch signaling enhanced cell proliferation. T supplementation not only triggered p38 mitogen-activated protein kinase (MAPK) activation but also concurrently inhibited c-Jun NH2-terminal kinase (JNK) activation within 2 weeks of treatment. Concomitant administration of SB203580, a p38 MAPK inhibitor, effectively blocked T-induced activation of Notch signaling and significantly (P<0.001) suppressed PCNA levels. Together, our results indicate that T induces muscle fiber hypertrophy through activation of Notch signaling and the inactivation of JNK together with the activation of p38 MAPK may be critical for T-induced activation of Notch signaling and, as a consequence, muscle fiber hypertrophy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Donghee Kim ◽  
Hyo-Jin Kim ◽  
Hee-Sook Jun

Polygonum multiflorum Thunb. (PM) root extracts have been used for treating graying hair in Oriental medicine; however, the molecular mechanisms underlying the melanogenic effects of PM root have not been fully understood. In the present study, we investigated the melanogenic effects of an ethanolic extract of PM root (PME) and the mechanisms involved. We examined the effects of PME on cell viability, cellular melanin content, and tyrosinase activity in B16F10 cells. The melanogenic mechanism of PME was explored using signaling inhibitors and examining the expression of melanogenic genes and signaling molecules by western blot and RT-qPCR analyses. PME did not exhibit any cytotoxicity in B16F10 cells compared to that in control cells. PME treatment significantly increased melanin production and tyrosinase activity. In addition, PME induced the expression of cyclooxygenase-2 (COX2) as well as that of melanogenic genes, such as microphthalmia-associated transcription factor (MiTF), tyrosinase-related protein (Trp) 1, Trp2, and tyrosinase, in B16F10 cells. PME treatment increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), and pretreatment with SB 203580, a p38 MAPK inhibitor, significantly suppressed this PME-induced increase in the expression of COX2 and melanogenic genes. These results indicate that PME induced the expression of melanogenic genes by inducing COX2 expression via the activation of the p38 MAPK pathway, thereby contributing to the enhancement of melanogenesis.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1205-1215 ◽  
Author(s):  
Rozmin T K Janoo ◽  
Lori A Neely ◽  
Burkhard R Braun ◽  
Simon K Whitehall ◽  
Charles S Hoffman

AbstractThe Schizosaccharomyces pombe fbp1 gene, which encodes fructose-1,6-bis-phosphatase, is transcriptionally repressed by glucose through the activation of the cAMP-dependent protein kinase A (PKA) and transcriptionally activated by glucose starvation through the activation of a mitogen-activated protein kinase (MAPK). To identify transcriptional regulators acting downstream from or in parallel to PKA, we screened an adh-driven cDNA plasmid library for genes that increase fbp1 transcription in a strain with elevated PKA activity. Two such clones express amino-terminally truncated forms of the S. pombe tup12 protein that resembles the Saccharomyces cerevisiae Tup1p global corepressor. These clones appear to act as dominant negative alleles. Deletion of both tup12 and the closely related tup11 gene causes a 100-fold increase in fbp1-lacZ expression, indicating that tup11 and tup12 are redundant negative regulators of fbp1 transcription. In strains lacking tup11 and tup12, the atf1-pcr1 transcriptional activator continues to play a central role in fbp1-lacZ expression; however, spc1 MAPK phosphorylation of atf1 is no longer essential for its activation. We discuss possible models for the role of tup11- and tup12-mediated repression with respect to signaling from the MAPK and PKA pathways. A third clone identified in our screen expresses the php5 protein subunit of the CCAAT-binding factor (CBF). Deletion of php5 reduces fbp1 expression under both repressed and derepressed conditions. The CBF appears to act in parallel to atf1-pcr1, although it is unclear whether or not CBF activity is regulated by PKA.


Sign in / Sign up

Export Citation Format

Share Document