Slope and wind effects on fire propagation

2004 ◽  
Vol 13 (2) ◽  
pp. 143 ◽  
Author(s):  
Domingos X. Viegas

The vectoring of wind and slope effects on a flame front is considered. Mathematical methods for vectoring are presented and compared to results of laboratory experiments. The concept of multiple standard fire spread directions is presented. The experimental laboratory study, included effects of variable wind velocity and direction on point source flame fronts on a 30° inclined fuel bed.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 139
Author(s):  
Rodman R. Linn ◽  
Judith L. Winterkamp ◽  
James H. Furman ◽  
Brett Williams ◽  
J. Kevin Hiers ◽  
...  

Coupled fire-atmosphere models are increasingly being used to study low-intensity fires, such as those that are used in prescribed fire applications. Thus, the need arises to evaluate these models for their ability to accurately represent fire spread in marginal burning conditions. In this study, wind and fuel data collected during the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiments (RxCADRE) fire campaign were used to generate initial and boundary conditions for coupled fire-atmosphere simulations. We present a novel method to obtain fuels representation at the model grid scale using a combination of imagery, machine learning, and field sampling. Several methods to generate wind input conditions for the model from eight different anemometer measurements are explored. We find a strong sensitivity of fire outcomes to wind inputs. This result highlights the critical need to include variable wind fields as inputs in modeling marginal fire conditions. This work highlights the complexities of comparing physics-based model results against observations, which are more acute in marginal burning conditions, where stronger sensitivities to local variability in wind and fuels drive fire outcomes.


2019 ◽  
Vol 44 (1) ◽  
pp. 35-57 ◽  
Author(s):  
Eric Guillaume ◽  
Virginie Dréan ◽  
Bertrand Girardin ◽  
Faiz Benameur ◽  
Maxime Koohkan ◽  
...  

1969 ◽  
Vol 37 (1) ◽  
pp. 51-80 ◽  
Author(s):  
W. D. Baines ◽  
J. S. Turner

This paper considers the effect of continuous convection from small sources of buoyancy on the properties of the environment when the region of interest is bounded. The main assumptions are that the entrainment into the turbulent buoyant region is at a rate proportional to the local mean upward velocity, and that the buoyant elements spread out at the top of the region and become part of the non-turbulent environment at that level. Asymptotic solutions, valid at large times, are obtained for the cases of plumes from point and line sources and also periodically released thermals. These all have the properties that the environment is stably stratified, with the density profile fixed in shape, changing at a uniform rate in time at all levels, and everywhere descending (with ascending buoyant elements).The analysis is carried out in detail for the point source in an environment of constant cross-section. Laboratory experiments have been conducted for this case, and these verify the major predictions of the theory. It is then shown how the method can be extended to include more realistic starting conditions for the convection, and a general shape of bounded environment. Finally, the model is applied quantitatively to a variety of problems in engineering, the atmosphere and the ocean, and the limitations on its use are discussed.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4999
Author(s):  
Matthew Craig ◽  
Taimoor Asim

In this study, advanced Computational Fluid Dynamics (CFD)-based numerical simulations have been performed in order to analyse fire propagation in a standard railway compartment. A Fire Dynamics Simulator (FDS) has been employed to mimic real world scenarios associated with fire propagation within railway carriages in order to develop safety guidelines for railway passengers. Comprehensive parametric investigations on the effects of ignition location, intensity and cabin upholstery have been carried out. It has been observed that a fire occurring near the exits of the carriage results in a lower smoke layer height, due to the local carriage geometry, than an identical fire igniting at the center of the carriage. This in turn causes the smoke density along the aisleway to vary by around 30%. Reducing the ignition energy by half has been found to restrict combustion, thus reducing smoke density and carbon exhaust gases, reducing the average temperature from 170 °C to 110 °C. Changing the material lining of the seating has been found to cause the most significant change in output parameters, despite its relative insignificance in bulk mass. A polyester sample produces a peak carbon monoxide concentration of 7500 ppm, which is 27× greater compared with nylon. This difference has been found to be due to the fire spread and propagation between fuels, signifying the polyester’s unsuitability for use in railway carriages.


2019 ◽  
Vol 29 (3) ◽  
pp. 123-133 ◽  
Author(s):  
Barbara Ksit ◽  
Anna Szymczak-Graczyk

Abstract Wind action belongs to loads that are environmentally variable. Wind action is included in the basic combination of loads, whereas hurricane wind action is classified as a unique combination. Due to large gusts of wind, the roof coverings of large-scale buildings are exposed to detachment of their cover layer. The article presents the effects of over-normative wind, which occurred on January 19, 2018 and was named the cyclone Frederic/David. The purpose of the article is to show that in design of roof coverings made of large-format materials, such as membranes, it is crucial to accept wind load values properly in order to ensure a right spacing between fasteners. The presented results might be an important contribution to the debate on the necessity for increasing the fundamental value of the basic wind velocity in the perimeter and corner zones of large-format roofs.


2011 ◽  
Vol 20 (8) ◽  
pp. 946 ◽  
Author(s):  
Miguel Almeida ◽  
Domingos Xavier Viegas ◽  
Ana Isabel Miranda ◽  
Valeria Reva

Spotting is a very important mechanism of forest fire spread. Its negative effect increases in extreme fire danger conditions. In order to predict the maximum spotting distance, the duration of the combustion reaction of potential firebrands should be evaluated. This paper reports the results of an experimental laboratory study of the combustibility of firebrand material (pine cones and scales and pieces of bark of eucalypt) of two representative species in Portugal, Pinus pinaster Ait. and Eucalyptus globulus Labill. The main purpose was to assess the role on the burning conditions of the firebrand particle orientation angle θ in relation to the airflow and of the flow velocity (U) around the particle. Tests were made varying the angle of orientation of the main axis of the particle in relation to incident flow in the range of ±90°; flow velocities were tested from 0 to 6.5 m s–1. After ignition, particle mass loss owing to flaming or glowing combustion of the particle was continuously measured. Residual mass, duration of the flaming phase and the burnout times are reported for each case. Empirical models to estimate the trends of variation of some of these parameters with θ and U are proposed to illustrate their importance for the range of test conditions.


Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Qiong Liu ◽  
K. T. Yang

It is important to examine the behavior of forest fires and city fires to mitigate the property damages and victims by fires. There have been many previous studies on forest fires where the fire spreading patterns were investigated, utilizing artificial satellite pictures of forest fires, together with the use of corresponding weather data and GIS data. On the other hand, large area city fires are very scarce in the world, particularly in modern cities where high-rise concrete buildings are constructed with sufficient open spaces. Thus, the examples of city fires to be referred are few and detailed investigations of city fires are limited. However, there have still been existing old cities where traditional houses built with flammable material such as wood, maybe historically important, only separated with very small open spacing. Fires may freely spread in those cities, once a big earthquake happens there and then water supply for the fire brigade is damaged in the worst case along with the effect of strong wind. There are some fundamental differences between the forest fires and city fires, as the fuel may distribute either continuously or discretely. For instance, in forest fires, the dead fallen leaves, dry grasses and trees are distributed continuously on the ground, while the wooden houses in cities are discretely distributed with some separation of open spacing, such as roads and gardens. Therefore, the wooden houses neighboring the burning houses with some separation are heated by radiation and flames to elevate the temperatures, thus causing the ignition, and finally reaching a large city fire. The authors have studied the forest fire spread and are planning to start a laboratory experiment of city fire spreading. In the preliminary investigation, a numerical study is made to correlate with the laboratory experiment of city fire propagation, utilizing the three-dimensional CFD simulations. Based on the detailed experimental analysis, the authors are attempting to modify the three dimensional CFD code to predict the forest fires and city fires more precisely, taking into account the thermal heating and ignition processes. In this study, some fundamental information on the city fire propagation has been obtained, particularly to know the safe open spacing distances between the houses in the cities and also the wind speed.


2007 ◽  
Vol 16 (5) ◽  
pp. 619 ◽  
Author(s):  
Beatriz Duguy ◽  
José Antonio Alloza ◽  
Achim Röder ◽  
Ramón Vallejo ◽  
Francisco Pastor

The number of large fires increased in the 1970s in the Valencia region (eastern Spain), as in most northern Mediterranean countries, owing to the fuel accumulation that affected large areas as a consequence of an intensive land abandonment. The Ayora site (Valencia province) was affected by a large fire in July 1979. We parameterised the fire growth model FARSITE for the 1979 fire conditions using remote sensing-derived fuel cartography. We simulated different fuel scenarios to study the interactions between fuel spatial distribution and fire characteristics (area burned, rate of spread and fireline intensity). We then tested the effectiveness of several firebreak networks on fire spread control. Simulations showed that fire propagation and behaviour were greatly influenced by fuel spatial distribution. The fragmentation of large dense shrubland areas through the introduction of wooded patches strongly reduced fire size, generally slowing fire and limiting fireline intensity. Both the introduction of forest corridors connecting woodlands and the promotion of complex shapes for wooded patches decreased the area burned. Firebreak networks were always very effective in reducing fire size and their effect was enhanced in appropriate fuel-altered scenarios. Most firebreak alternatives, however, did not reduce either rate of fire spread or fireline intensity.


2018 ◽  
Vol 27 (11) ◽  
pp. 727 ◽  
Author(s):  
Miguel G. Cruz ◽  
Andrew L. Sullivan ◽  
James S. Gould ◽  
Richard J. Hurley ◽  
Matt P. Plucinski

The effect of grass fuel load on fire behaviour and fire danger has been a contentious issue for some time in Australia. Existing operational models have placed different emphases on the effect of fuel load on model outputs, which has created uncertainty in the operational assessment of fire potential and has led to end-user and public distrust of model outcomes. A field-based experimental burning program was conducted to quantify the effect of fuel load on headfire rate of spread and other fire behaviour characteristics in grasslands. A total of 58 experimental fires conducted at six sites across eastern Australia were analysed. We found an inverse relationship between fuel load and the rate of spread in grasslands, which is contrary to current, untested, modelling assumptions. This result is valid for grasslands where fuel load is not a limiting factor for fire propagation. We discuss the reasons for this effect and model it to produce a fuel load effect function that can be applied to operational grassfire spread models used in Australia. We also analyse the effect of fuel load on flame characteristics and develop a model for flame height as a function of rate of fire spread and fuel load.


Sign in / Sign up

Export Citation Format

Share Document