Preliminary Study of Fire Spread in Cities and Forests, Using PMMA Specimen as a Fuel in CFD Simulations

Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Qiong Liu ◽  
K. T. Yang

It is important to examine the behavior of forest fires and city fires to mitigate the property damages and victims by fires. There have been many previous studies on forest fires where the fire spreading patterns were investigated, utilizing artificial satellite pictures of forest fires, together with the use of corresponding weather data and GIS data. On the other hand, large area city fires are very scarce in the world, particularly in modern cities where high-rise concrete buildings are constructed with sufficient open spaces. Thus, the examples of city fires to be referred are few and detailed investigations of city fires are limited. However, there have still been existing old cities where traditional houses built with flammable material such as wood, maybe historically important, only separated with very small open spacing. Fires may freely spread in those cities, once a big earthquake happens there and then water supply for the fire brigade is damaged in the worst case along with the effect of strong wind. There are some fundamental differences between the forest fires and city fires, as the fuel may distribute either continuously or discretely. For instance, in forest fires, the dead fallen leaves, dry grasses and trees are distributed continuously on the ground, while the wooden houses in cities are discretely distributed with some separation of open spacing, such as roads and gardens. Therefore, the wooden houses neighboring the burning houses with some separation are heated by radiation and flames to elevate the temperatures, thus causing the ignition, and finally reaching a large city fire. The authors have studied the forest fire spread and are planning to start a laboratory experiment of city fire spreading. In the preliminary investigation, a numerical study is made to correlate with the laboratory experiment of city fire propagation, utilizing the three-dimensional CFD simulations. Based on the detailed experimental analysis, the authors are attempting to modify the three dimensional CFD code to predict the forest fires and city fires more precisely, taking into account the thermal heating and ignition processes. In this study, some fundamental information on the city fire propagation has been obtained, particularly to know the safe open spacing distances between the houses in the cities and also the wind speed.


2015 ◽  
Vol 24 (7) ◽  
pp. 1008 ◽  
Author(s):  
J. R. Raposo ◽  
S. Cabiddu ◽  
D. X. Viegas ◽  
M. Salis ◽  
J. Sharples

Results from a laboratory-scale investigation of a fire spreading on the windward face of a triangular-section hill of variable shape with wind perpendicular to the ridgeline are reported. They confirm previous observations that the fire enlarges its lateral spread after reaching the ridgeline, entering the leeward face with a much wider front. Reference fire spread velocities were measured and analysed, putting in evidence the importance of the dynamic effect due to flow velocity and its associated horizontal-axis separation vortex strength without dependence on hill geometry. Similar parameters estimated from three forest fires compared favourably with the laboratory-scale measurements.



Author(s):  
Jianwei Li ◽  
Xiaowen Li ◽  
Chongchen Chen ◽  
Huiru Zheng ◽  
Naiyuan Liu

Forest fire is one of the most frequent, fast spreading and destructive natural disasters. Many countries have developed their own fire prediction model and computational systems to predict the fire spreading, however, the user interaction, display effect and prediction accuracy have not yet met the requirements for firefighting in real forest fire events. The forest fire spreading is a complex process affected by multi-factors. Understanding the relationships between these multi-factors and the forest fire spreading trend is vital to predicting the fire spreading promptly and accurately to make the strategy in extinguishing the forest fire. In this paper, we propose and develop a three-dimensional (3D) forest fire spreading simulation system, FFSimulator, to visualize the impact of multi-factors to the fire spread. FFSimultor integrates the multi-factor analysis approach with the FARSITE prediction model to improve the prediction. The FFSimulator developed applies 3D scene organization, template-based vector data mapping and overlaps visualization techniques to provide a 3D dynamic visualization of large-scale forest fire. The 3D multi-factors superposition analysis simulates the impacts of individual factor and multi-factors on the trend of surface fire spreading, which can be used to identify the key sites for the prevention and the control of forest fires. The system has been tested and evaluated using real data of Shanghan forest fire.



2001 ◽  
Author(s):  
K. Satoh ◽  
K. T. Yang

Abstract Forest fires are of common occurrence all over the world, causing the loss of precious natural resources. The propagation of forest fires depends on many factors, notably local weather conditions. Additionally, the local terrain such as mountainous areas also plays an important role. For instance, forest fires may propagate from mountain ridges to ridges due to locally strong wind by means of firebrands and hot air flows. While much is known cm the methodologies on the forest fire control, they are largely empirical and may not be totally effective. Therefore, scientific studies based on fundamental physical understanding of the underlying phenomena are needed to provide definitive data on cause-effect relationships in various forest fire scenarios, so that the collective database can be used to suggest control strategies and preventive measures for forest fires. The present study is motivated by this approach, and specifically focuses on the phenomena of rapid forest-fire propagation from mountain slqpes to other similar mountain slopes in the direction of the wind. The study deals with both laboratory experiments and numerical simulations by the use of a CFD-based fire field model.



2020 ◽  
Vol 99 (3) ◽  
pp. 54-61
Author(s):  
V.A. Perminov ◽  
◽  
K.O. Fryanova ◽  

Currently, methods of mathematical modeling are used to study processes in emergency situations. Forest fires are extremely complex and destructive natural phenomena which depend on availability of fuel, meteorological and other conditions. Mathematical model of forest fire is based on an analysis of known experimental data and using concept and methods from reactive media mechanics. In this paper the theoretical study of the problems of crown forest fire spread in windy condition and their thermal impact on the wooden building were carried out. The research was based on numerical solution of two-dimensional Reynolds equations. The boundary-value problem is solved numerically using the method of splitting according to physical processes. A discrete analogue for the system of equations was obtained by means of the control volume method. A study of forest fire spreading made it possible to obtain a detailed picture of the change of the component concentration of gases and temperature fields in forest fire and on the wall of building with time. It let to determine the limiting distances between forest fire and building for possibility of wooden walls ignition for different meteorology conditions, size of building and intensity of fire impact.



Author(s):  
Koyu Satoh ◽  
Domingos Viegas ◽  
Claudia Pinto ◽  
Ran Tu

Abstract Large-scale urban and forest fires, especially earthquake-induced fires may produce huge fire whirls and cause serious damage, due to the involved tornado-like strong wind, together with radiation and swirling flame. If fire whirls are generated, the danger to firefighters increases extremely. Many small-scale experiments and CFD simulations on fire whirls have already been conducted and also our previous numerical studies examined the generation of a large fire whirl in an oil tank. However, details of large-scale fire whirls have not been clarified yet. In this study, developing the previous works, additional CFD simulations are conducted to examine the generation process and particularly the stability of fire whirls. Three schemes to generate fire whirls are employed, using the 15 × 15 PMMA fuel array in windy conditions and n-heptane burning in a steel pan placed centrally on the floor in a tall channel with staggered four corner gaps, also using a channel with a single corner gap. The numerical results showed that the relationship between the fire area and the wind blowing area is important on the fire whirl generation in the PMMA scheme and n-heptane fire burning scheme in a channel. In addition to the channel gap size to produce a maximum fire whirl, the effects of channel height and horizontal channel area upon the fire whirl are examined. The wall temperatures of the channel are important to keep the swirling motion stably, particularly the wall temperature at about 300°C can stabilize the fire whirl in a channel. Also multiple small fires placed surrounding the central swirling fire can increase the stability of the fire whirl, although too strong multiple fires may destroy the stability. These phenomena may be related to the real fire whirl generation in the natural environment.



2003 ◽  
Author(s):  
Kohyu Satoh ◽  
Shiro Kitamura ◽  
Kunio Kuwahara ◽  
K. T. Yang

Forest fires are of common occurrence all over the world, causing severe damages to valuable natural environment and loss of human lives. In order to reduce the damages by forest fires, it is useful to utilize a system, which can predict the occurrence of forest fires and the spread of fires. Well known is a system in USA, called NFDRS to predict forest fire occurrence and FARSITE to predict fire growth, based on the fire weather information taken from a network, combined with forest fuel conditions and land topography data, and processed by an algorithm to generate the various fire danger indices. In Japan the number of forest fires is roughly 3,000 per year, which is 1/30 times compared with USA, and there are very few fires exceeding 1000 ha burnt area, hence there has existed scant demand for this type of intelligent system. Although recently there is an increasing demand for such a system in Japan, the US system for forest-fire prediction is however not applicable to Japan, since the forest topology and weather conditions between Japan and USA are far different. Moreover, many fire weather stations have been installed in the US forests, but in Japan no such fire weather stations are installed in forests. Thus, as a first step to develop an intelligent system for Japan, we have analyzed the fundamentals of forest fire danger rating and the fire spread, based on the weather data and other information on forest fires. The objective of this study is to examine how the fundamentals, based on analyzing the past fire occurrences and CFD simulations particularly on “Katunuma Fire”, can predict the occurrence of forest fires and the spread of forest fires.



Geomatics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 50-64
Author(s):  
Michele Mangiameli ◽  
Giuseppe Mussumeci ◽  
Annalisa Cappello

Forest fires are one of the most dangerous events, causing serious land and environmental degradation. Indeed, besides the loss of a huge quantity of plant species, the effects of fires can go far beyond: desertification, increased risk of landslides, soil erosion, death of animals, etc. For these reasons, mathematical models able to predict fire spreading are needed in order to organize and optimize the extinguishing interventions during fire emergencies. This work presents a new system to simulate and predict the movement of the fire front based on free and open source Geographic Information System (GIS) technologies and the Rothermel surface fire spread model, with the adjustments made by Albini. We describe the mathematical models used, provide an overview of the GIS design and implementation, and present the results of some simulations at Etna volcano (Sicily, Italy), characterized by high geomorphological heterogeneity, and where the native flora and fauna may be preserved and perpetuated. The results consist of raster maps representing the progress times of the fire front starting from an ignition point and as a function of the topography and wind directions. The reliability of results is strictly affected by the correct positioning of the fire ignition point, by the accuracy of the topography that describes the morphology of the territory, and by the setting of the meteorological conditions at the moment of the ignition and propagation of the fire.



Author(s):  
Ahmed M Nagib Elmekawy ◽  
Hassan A Hassan Saeed ◽  
Sadek Z Kassab

Three-dimensional CFD simulations are carried out to study the increase of power generated from Savonius vertical axis wind turbines by modifying the blade shape and blade angel of twist. Twisting angle of the classical blade are varied and several proposed novel blade shapes are introduced to enhance the performance of the wind turbine. CFD simulations have been performed using sliding mesh technique of ANSYS software. Four turbulence models; realizable k -[Formula: see text], standard k - [Formula: see text], SST transition and SST k -[Formula: see text] are utilized in the simulations. The blade twisting angle has been modified for the proposed dimensions and wind speed. The introduced novel blade increased the power generated compared to the classical shapes. The two proposed novel blades achieved better power coefficients. One of the proposed models achieved an increase of 31% and the other one achieved 32.2% when compared to the classical rotor shape. The optimum twist angel for the two proposed models achieved 5.66% and 5.69% when compared with zero angle of twist.



Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 674
Author(s):  
Paul Caicedo ◽  
David Wood ◽  
Craig Johansen

Solar chimney power plants (SCPPs) collect air heated over a large area on the ground and exhaust it through a turbine or turbines located near the base of a tall chimney to produce renewable electricity. SCPP design in practice is likely to be specific to the site and of variable size, both of which require a purpose-built turbine. If SCPP turbines cannot be mass produced, unlike wind turbines, for example, they should be as cheap as possible to manufacture as their design changes. It is argued that a radial inflow turbine with blades made from metal sheets, or similar material, is likely to achieve this objective. This turbine type has not previously been considered for SCPPs. This article presents the design of a radial turbine to be placed hypothetically at the bottom of the Manzanares SCPP, the only large prototype to be built. Three-dimensional computational fluid dynamics (CFD) simulations were used to assess the turbine’s performance when installed in the SCPP. Multiple reference frames with the renormalization group k-ε turbulence model, and a discrete ordinates non-gray radiation model were used in the CFD simulations. Three radial turbines were designed and simulated. The largest power output was 77.7 kW at a shaft speed of 15 rpm for a solar radiation of 850 W/m2 which exceeds by more than 40 kW the original axial turbine used in Manzanares. Further, the efficiency of this turbine matches the highest efficiency of competing turbine designs in the literature.



Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Nicholas F. McCarthy ◽  
Ali Tohidi ◽  
Yawar Aziz ◽  
Matt Dennie ◽  
Mario Miguel Valero ◽  
...  

Scarcity in wildland fire progression data as well as considerable uncertainties in forecasts demand improved methods to monitor fire spread in real time. However, there exists at present no scalable solution to acquire consistent information about active forest fires that is both spatially and temporally explicit. To overcome this limitation, we propose a statistical downscaling scheme based on deep learning that leverages multi-source Remote Sensing (RS) data. Our system relies on a U-Net Convolutional Neural Network (CNN) to downscale Geostationary (GEO) satellite multispectral imagery and continuously monitor active fire progression with a spatial resolution similar to Low Earth Orbit (LEO) sensors. In order to achieve this, the model trains on LEO RS products, land use information, vegetation properties, and terrain data. The practical implementation has been optimized to use cloud compute clusters, software containers and multi-step parallel pipelines in order to facilitate real time operational deployment. The performance of the model was validated in five wildfires selected from among the most destructive that occurred in California in 2017 and 2018. These results demonstrate the effectiveness of the proposed methodology in monitoring fire progression with high spatiotemporal resolution, which can be instrumental for decision support during the first hours of wildfires that may quickly become large and dangerous. Additionally, the proposed methodology can be leveraged to collect detailed quantitative data about real-scale wildfire behaviour, thus supporting the development and validation of fire spread models.



Sign in / Sign up

Export Citation Format

Share Document