Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard

2009 ◽  
Vol 18 (5) ◽  
pp. 563 ◽  
Author(s):  
Francisco Moreira ◽  
Pedro Vaz ◽  
Filipe Catry ◽  
Joaquim S. Silva

Patterns of wildfire occurrence at the landscape level were characterised during the period 1990–94 in Portugal. Based on land-cover information within 5591 burned patches (larger than 5 ha) and in the surrounding landscape, selection ratio functions were used to measure fire preference or avoidance for different land-cover types in 12 regions of the country. Shrublands were the most fire-prone land cover, whereas annual crops, permanent crops and agro-forestry systems were the most avoided by fire. In terms of forest types, conifer plantations were more susceptible to fire than eucalyptus, and broadleaved forests were the least fire-prone. There were regional variations in land-cover susceptibility to fire, which may be explained by differences in climate, management, ignition patterns, firefighting strategies, and regional availability. A cluster analysis of regional variations in selection ratios for all land covers allowed the identification of three main geographical areas with similar fire selection patterns. These results can be used for planning landscape-scale fuel management in order to create landscapes with a lower fire hazard.

2019 ◽  
Vol 11 (19) ◽  
pp. 2238 ◽  
Author(s):  
Leilei Jiao ◽  
Weiwei Sun ◽  
Gang Yang ◽  
Guangbo Ren ◽  
Yinnian Liu

Mapping different land cover types with satellite remote sensing data is significant for restoring and protecting natural resources and ecological services in coastal wetlands. In this paper, we propose a hierarchical classification framework (HCF) that implements two levels of classification scheme to identify different land cover types of coastal wetlands. The first level utilizes the designed decision tree to roughly group land covers into four rough classes and the second level combines multiple features (i.e., spectral feature, texture feature and geometric feature) of each class to distinguish different subtypes of land covers in each rough class. Two groups of classification experiments on Landsat and Sentinel multispectral data and China Gaofen (GF)-5 hyperspectral data are carried out in order to testify the classification behaviors of two famous coastal wetlands of China, that is, Yellow River Estuary and Yancheng coastal wetland. Experimental results on Landsat data show that the proposed HCF performs better than support vector machine and random forest in classifying land covers of coastal wetlands. Moreover, HCF is suitable for both multispectral data and hyperspectral data and the GF-5 data is superior to Landsat-8 and Sentinel-2 multispectral data in obtaining fine classification results of coastal wetlands.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Anthony Egeru ◽  
Oliver Wasonga ◽  
Geofrey Gabiri ◽  
Laban MacOpiyo ◽  
John Mburu ◽  
...  

Soil properties contribute to the widely recognised resilience of semiarid areas. However, limited attention has been given in providing a scientific basis of how semiarid soil properties in the various land covers occur and how they influence forage quantity. This study investigated the influence of different soil properties and land cover types on herbaceous biomass quantity in the Karamoja subregion of Uganda. A completely randomized design in three land cover types (thickets and shrublands, woodlands, and savannah grasslands) was implemented. In each vegetation type, 50 × 40 m plots were demarcated with nested plots to facilitate clipping of the herbaceous layer. Composite soil samples at two depths (0–15 cm, 15–30 cm) were obtained from each plot. The results showed that soil properties varied across land cover types. Soil pH ranged between 6.9 and 8.1 and SOM, N, P, and K were generally low in all land cover types. Soil hydraulic properties revealed the existence of rapid to very rapid permeability in thickets/shrublands, grasslands, and woodlands. Percent change in soil properties (0–15 cm to 15–30 cm) was highest in P, Ca, Mg, Na, and SOM. In the grasslands, P positively (p≤0.01) influenced herbaceous biomass, whereas pH, K, Na, % sand, and % clay, N, and SOM had a negative relationship with herbaceous biomass (p≤0.05). Herbaceous biomass in the thickets/shrublands was negatively influenced by P, Ca, and Mg and % clay and positively by N and % silt (p≤0.05). Only N and SOM were significant determinants of herbaceous biomass in the woodlands (p≤0.05). The low level of soil nutrients observed in this study reveals the fragility of semiarid soils, indicating the need for sustainable landscape management.


2019 ◽  
Vol 11 (6) ◽  
pp. 660 ◽  
Author(s):  
Chang-An Liu ◽  
Zhongxin Chen ◽  
Di Wang ◽  
Dandan Li

We present a classification of plastic-mulched farmland (PMF) and other land cover types using full polarimetric RADARSAT-2 data and dual polarimetric (HH, VV) TerraSAR-X data, acquired from a test site in Hebei, China, where the main land covers include PMF, bare soil, winter wheat, urban areas and water. The main objectives were to evaluate the outcome of using high-resolution TerraSAR-X data for classifying PMF and other land covers and to compare classification accuracies based on different synthetic aperture radar bands and polarization parameters. Initially, different polarimetric indices were calculated, while polarimetric decomposition methods were used to obtain the polarimetric decomposition components. Using these polarimetric components as input, the random forest supervised classification algorithm was applied in the classification experiments. Our results show that in this study full-polarimetric RADARSAT-2 data produced the most accurate overall classification (94.81%), indicating that full polarization is vital to distinguishing PMF from other land cover types. Dual polarimetric data had similar levels of classification error for PMF and bare soil, yielding mapping accuracies of 53.28% and 59.48% (TerraSAR-X), and 59.56% and 57.1% (RADARSAT-2), respectively. We found that Shannon entropy made the greatest contribution to accuracy in all three experiments, suggesting that it has great potential to improve agricultural land use classifications based on remote sensing.


2009 ◽  
Vol 17 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Feng WANG ◽  
Shu-Qi WANG ◽  
Xiao-Zeng HAN ◽  
Feng-Xian WANG ◽  
Ke-Qiang ZHANG

2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-28
Author(s):  
Yuxiang Lin ◽  
Wei Dong ◽  
Yi Gao ◽  
Tao Gu

With the increasing relevance of the Internet of Things and large-scale location-based services, LoRa localization has been attractive due to its low-cost, low-power, and long-range properties. However, existing localization approaches based on received signal strength indicators are either easily affected by signal fading of different land-cover types or labor intensive. In this work, we propose SateLoc, a LoRa localization system that utilizes satellite images to generate virtual fingerprints. Specifically, SateLoc first uses high-resolution satellite images to identify land-cover types. With the path loss parameters of each land-cover type, SateLoc can automatically generate a virtual fingerprinting map for each gateway. We then propose a novel multi-gateway combination strategy, which is weighted by the environmental interference of each gateway, to produce a joint likelihood distribution for localization and tracking. We implement SateLoc with commercial LoRa devices without any hardware modification, and evaluate its performance in a 227,500-m urban area. Experimental results show that SateLoc achieves a median localization error of 43.5 m, improving more than 50% compared to state-of-the-art model-based approaches. Moreover, SateLoc can achieve a median tracking error of 37.9 m with the distance constraint of adjacent estimated locations. More importantly, compared to fingerprinting-based approaches, SateLoc does not require the labor-intensive fingerprint acquisition process.


2021 ◽  
Vol 13 (15) ◽  
pp. 2981
Author(s):  
Jeanné le Roux ◽  
Sundar Christopher ◽  
Manil Maskey

Planet, a commercial company, has achieved a key milestone by launching a large fleet of small satellites (smallsats) that provide high spatial resolution imagery of the entire Earth’s surface on a daily basis with its PlanetScope sensors. Given the potential utility of these data, this study explores the use for fine particulate matter (PM2.5) air quality applications. However, before these data can be utilized for air quality applications, key features of the data, including geolocation accuracy, calibration quality, and consistency in spectral signatures, need to be addressed. In this study, selected Dove-Classic PlanetScope data is screened for geolocation consistency. The spectral response of the Dove-Classic PlanetScope data is then compared to Moderate Resolution Imaging Spectroradiometer (MODIS) data over different land cover types, and under varying PM2.5 and mid visible aerosol optical depth (AOD) conditions. The data selected for this study was found to fall within Planet’s reported geolocation accuracy of 10 m (between 3–4 pixels). In a comparison of top of atmosphere (TOA) reflectance over a sample of different land cover types, the difference in reflectance between PlanetScope and MODIS ranged from near-zero (0.0014) to 0.117, with a mean difference in reflectance of 0.046 ± 0.031 across all bands. The reflectance values from PlanetScope were higher than MODIS 78% of the time, although no significant relationship was found between surface PM2.5 or AOD and TOA reflectance for the cases that were studied. The results indicate that commercial satellite data have the potential to address Earth-environmental issues.


Sign in / Sign up

Export Citation Format

Share Document