scholarly journals Defining fire spread event days for fire-growth modelling

2011 ◽  
Vol 20 (4) ◽  
pp. 497 ◽  
Author(s):  
Justin Podur ◽  
B. Mike Wotton

Forest fire managers have long understood that most of a fire’s growth typically occurs on a small number of days when burning conditions are conducive for spread. Fires either grow very slowly at low intensity or burn considerable area in a ‘run’. A simple classification of days into ‘spread events’ and ‘non-spread events’ can greatly improve estimates of area burned. Studies with fire-growth models suggest that the Canadian Forest Fire Behaviour Prediction System (FBP System) seems to predict growth well during high-intensity ‘spread events’ but tends to overpredict rate of spread for non-spread events. In this study, we provide an objective weather-based definition of ‘spread events’, making it possible to assess the probability of having a spread event on any particular day. We demonstrate the benefit of incorporating this ‘spread event’ day concept into a fire-growth model based on the Canadian FBP System.

2007 ◽  
Vol 16 (5) ◽  
pp. 619 ◽  
Author(s):  
Beatriz Duguy ◽  
José Antonio Alloza ◽  
Achim Röder ◽  
Ramón Vallejo ◽  
Francisco Pastor

The number of large fires increased in the 1970s in the Valencia region (eastern Spain), as in most northern Mediterranean countries, owing to the fuel accumulation that affected large areas as a consequence of an intensive land abandonment. The Ayora site (Valencia province) was affected by a large fire in July 1979. We parameterised the fire growth model FARSITE for the 1979 fire conditions using remote sensing-derived fuel cartography. We simulated different fuel scenarios to study the interactions between fuel spatial distribution and fire characteristics (area burned, rate of spread and fireline intensity). We then tested the effectiveness of several firebreak networks on fire spread control. Simulations showed that fire propagation and behaviour were greatly influenced by fuel spatial distribution. The fragmentation of large dense shrubland areas through the introduction of wooded patches strongly reduced fire size, generally slowing fire and limiting fireline intensity. Both the introduction of forest corridors connecting woodlands and the promotion of complex shapes for wooded patches decreased the area burned. Firebreak networks were always very effective in reducing fire size and their effect was enhanced in appropriate fuel-altered scenarios. Most firebreak alternatives, however, did not reduce either rate of fire spread or fireline intensity.


2018 ◽  
Vol 27 (11) ◽  
pp. 727 ◽  
Author(s):  
Miguel G. Cruz ◽  
Andrew L. Sullivan ◽  
James S. Gould ◽  
Richard J. Hurley ◽  
Matt P. Plucinski

The effect of grass fuel load on fire behaviour and fire danger has been a contentious issue for some time in Australia. Existing operational models have placed different emphases on the effect of fuel load on model outputs, which has created uncertainty in the operational assessment of fire potential and has led to end-user and public distrust of model outcomes. A field-based experimental burning program was conducted to quantify the effect of fuel load on headfire rate of spread and other fire behaviour characteristics in grasslands. A total of 58 experimental fires conducted at six sites across eastern Australia were analysed. We found an inverse relationship between fuel load and the rate of spread in grasslands, which is contrary to current, untested, modelling assumptions. This result is valid for grasslands where fuel load is not a limiting factor for fire propagation. We discuss the reasons for this effect and model it to produce a fuel load effect function that can be applied to operational grassfire spread models used in Australia. We also analyse the effect of fuel load on flame characteristics and develop a model for flame height as a function of rate of fire spread and fuel load.


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.


2017 ◽  
Vol 26 (4) ◽  
pp. 331 ◽  
Author(s):  
C. M. Thomas ◽  
J. J. Sharples ◽  
J. P. Evans

Dynamic fire behaviour involves rapid changes in fire behaviour without significant changes in ambient conditions, and can compromise firefighter and community safety. Dynamic fire behaviour cannot be captured using spatial implementations of empirical fire-spread models predicated on the assumption of an equilibrium, or quasi-steady, rate of spread. In this study, a coupled atmosphere–fire model is used to model the dynamic propagation of junction fires, i.e. when two firelines merge at an oblique angle. This involves very rapid initial rates of spread, even with no ambient wind. The simulations are in good qualitative agreement with a previous experimental study, and indicate that pyro-convective interaction between the fire and the atmosphere is the key mechanism driving the dynamic fire propagation. An examination of the vertical vorticity in the simulations, and its relationship to the fireline geometry, gives insight into this mechanism. Junction fires have been modelled previously using curvature-dependent rates of spread. In this study, however, although fireline geometry clearly influences rate of spread, no relationship is found between local fireline curvature and the simulated instantaneous local rate of spread. It is possible that such a relationship may be found at larger scales.


1989 ◽  
Vol 19 (11) ◽  
pp. 1496-1500
Author(s):  
R. S. McAlpine

Elliptical fire growth models are dependant on a relationship between the length to width ratio of the ellipse and the prevailing wind speed. A laboratory study of point source fires growing in two fuel types (Ponderosa Pine (Pinusponderosa Laws.) needle litter and excelsior) showed that the length to width ratio changes from the time of inception until a stabilized "equilibrium" eccentricity is established. The size of fuel bed required to allow stabilization of the length to width ratio is dependant on wind speed. Results indicate that a fuel bed 0.93 m wide is insufficient to allow length to width ratio stabilization for wind speeds above 1.6 km/h.


Author(s):  
Phil Cheney ◽  
Andrew Sullivan

Grassfires: Fuel, Weather and Fire Behaviour presents information from CSIRO on the behaviour and spread of fires in grasslands. This second edition follows over 10 years of research aimed at improving the understanding of the fundamental processes involved in the behaviour of grassfires. The book covers all aspects of fire behaviour and spread in the major types of grasses in Australia. It examines the factors that affect fire behaviour in continuous grassy fuels; fire in spinifex fuels; the effect of weather and topography on fire spread; wildfire suppression strategies; and how to reconstruct grassfire spread after the fact. The three meters designed by CSIRO for the prediction of fire danger and rate of spread of grassfires are explained and their use and limitations discussed. This new edition expands the discussion of historical fires including Aboriginal burning practices, the chemistry of combustion, and the structure of turbulent diffusion flames. It also examines fire safety, including the difficulty of predicting wind strength and direction and the impact of threshold wind speed on safe fire suppression. Myths and fallacies about fire behaviour are explained in relation to their impact on personal safety and survival. Grassfires will be a valuable reference for rural fire brigade members, landholders, fire authorities, researchers and those studying landscape and ecological processes.


2014 ◽  
Vol 14 (9) ◽  
pp. 2359-2371 ◽  
Author(s):  
C. C. Simpson ◽  
J. J. Sharples ◽  
J. P. Evans

Abstract. Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere–fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere–fire coupling are required to model VLS with WRF-Fire.


2007 ◽  
Vol 11 (2) ◽  
pp. 259-270 ◽  
Author(s):  
Alexander Karpov ◽  
Henry Telitsyn ◽  
Nadezhda Efimova ◽  
Victor Berdonosov ◽  
Sergey Popovich

The approach to the implementation of a computer code, based on the geographic information system, for the forest fire behavior prediction is presented. Consecutive steps are considered, which include the formulation of fire spread mathematical model, classification of vegetation fuels using the forest inventory data, approximation of fire perimeter propagation, and overall arrangement of fire simulation code. .


2015 ◽  
Vol 24 (6) ◽  
pp. 784 ◽  
Author(s):  
Joel K. Kelso ◽  
Drew Mellor ◽  
Mary E. Murphy ◽  
George J. Milne

A methodology for validating fire spread simulation systems using historical fire data is presented. The key features of this methodology are (a) quantitative comparison between simulator-generated fire perimeters and fire perimeters from an independently produced fire reconstruction at multiple time points during the fire, and (b) extensive sensitivity analyses on simulation variables including simulation spatial resolution, weather, vegetation coverage and fire behaviour model selection to determine the effect of each simulation input on the simulation output. The methodology is demonstrated in a case study in which the ability of the Australis high-performance wildfire simulator to replicate a large wildfire in Western Australia was examined. Simulation accuracy was found to be lower in extreme fire danger conditions and exhibited under-prediction of the head fire rate of spread. This was caused by inaccuracies in at least one of wind speed data, vegetation data or the fire behaviour model applied; however, the source of the inaccuracy could not be further diagnosed with the available data. The gathering of accurate data during and after active wildfires would facilitate more rigorous simulator and fire behaviour model validation studies as well as more accurate prediction of ‘live’ wildfires.


2012 ◽  
Vol 21 (7) ◽  
pp. 828 ◽  
Author(s):  
F. Pimont ◽  
J.-L. Dupuy ◽  
R. R. Linn

Wind and slope are commonly accepted to be major environmental factors affecting the manner in which wildfires propagate. Fire-line width has been observed as having a significant effect on fire behaviour in some experimental fires. Most wildfire behaviour models and fire behaviour prediction systems take wind and slope effects into account when determining the rate of spread, but do not take into account the influence of fire width on the coupled effects of slope and wind. In the present study, the effect of topographic slope on rate of spread under weak (1 m s–1), moderate (5 m s–1) and strong (12 m s–1) wind speeds is investigated for two different initial fire widths (20 and 50 m) in a typical Mediterranean garrigue, using the coupled atmosphere–fire HIGRAD-FIRETEC model. The results show non-trivial combined effects and suggest a strong effect of fire width under low-wind conditions, especially for steep slopes. Simulated spread rates were compared with predictions of existing models of operational systems and a reasonable agreement was found. Additional exploratory simulations of fire behaviour in small canyons are provided. These simulations show how combined effects of wind, slope and fire-front size can induce different fire behaviours that operational models could fail to predict and provide insight that could be valuable for analysis of blow-up fires. These preliminary results also suggest that 3D physically based models could be used in the future to investigate how operational models can include non-local effects of fire propagation.


Sign in / Sign up

Export Citation Format

Share Document