Water and Energy Turnover in a Small Monitor Lizard, Varanus-Acanthurus

1990 ◽  
Vol 17 (6) ◽  
pp. 641 ◽  
Author(s):  
G Dryden ◽  
B Green ◽  
D King ◽  
J Losos

The field metabolic rates and water influxes of Varanus acanthurus were determined by means of doubly-labelled water during late spring. The mean metabolic rate was 0.101 +/- 0.032 mL CO2 g-1 h-1, which was equivalent to an energy expenditure of 63 kJ kg-1 day-1 and a fresh food consumption rate of 13.2 g kg-1 day-1. The mean rate of water influx was 15.9 +/- 6.8 mL kg-1 day-1 and it is suggested that up to 30% of water influxes are via pulmo-cutaneous exchange and drinking. It is considered that V. acanthurus is a secretive 'sit and wait' predator and that this accounts for the lower than predicted water influx and metabolic rates of this species.

2002 ◽  
Vol 205 (22) ◽  
pp. 3571-3575 ◽  
Author(s):  
Avner Anava ◽  
Michael Kam ◽  
Amiram Shkolnik ◽  
A. Allan Degen

SUMMARY Arabian babblers (Turdoides squamiceps; mean adult body mass=72.5 g) inhabit extreme deserts of Israel. Previous studies have shown that their daily field metabolic rates are similar in winter and summer and that there is an increase during the breeding season. We hypothesized that the difference in seasonal daily field metabolic rate would be a consequence of differences in daytime metabolic rate, and that night-time metabolic rate would be similar during the three seasons. We used doubly labelled water to determine daily,daytime and night-time field metabolic and water-influx rates in breeding babblers in spring and nonbreeding babblers in winter and summer. Daily and daytime energy expenditure rates were higher during the breeding season than during either summer or winter, but there was no difference among seasons in night-time energy expenditure rates. Thus, our hypothesis was supported. The daytime field metabolic rates in summer and winter nonbreeding babblers were 3.92× and 4.32× the resting metabolic rate (RMR),respectively, and in breeding babblers was 5.04× RMR, whereas the night-time field metabolic rates ranged between 1.26× RMR and 1.35× RMR in the three seasons. Daily and daytime water-influx rates were highest in winter, intermediate during the breeding season and lowest in summer, but there was no difference among seasons in night-time water-influx rate. Daytime water-influx rate was greater than night-time water-influx rate by 2.5-fold in summer, 3.9-fold in the breeding season and 6.75-fold in winter. Seasonal patterns of daily and daytime energy expenditure were similar, as were seasonal patterns of daily and daytime water influx. Daily and daytime energy expenditure and water-influx rates differed among seasons whereas night-time rates of both did not. Daily and daytime field metabolic rates of babblers were highest during the breeding season, whereas daily and daytime water-influx rates were highest in winter.


1985 ◽  
Vol 33 (5) ◽  
pp. 683 ◽  
Author(s):  
KA Nagy ◽  
GC Suckling

Doubly labelled water measurements in free-ranging sugar gliders (Petaurus breviceps) weighing 121 g indicated that field metabolic rates (FMRS) averaged 62.5 litres CO2/kg daily, equivalent to 169 kJ per animal daily (3.8 times basal metabolic rate). The females, most of which had small pouch young, weighed significantly less than males (112 g compared with 135 g), but mass-specific FMRS did not differ significantly between sexes. Rates of water influx (mass-specific) also did not differ between sexes, and were 208 ml/kg daily. The diet consisted of about two-thirds acacia gum, one-third mixed arthropods and traces of bark (on a dry mass basis). Apparent assimilation of dietary substances was 88% for DM, 89% for energy, 86% for nitrogen and 61% for water. Gliders consumed 11.2 g DM of food daily. The diet contained 44% water (fresh mass basis), and provided about half of the water gliders obtained. The other half presumably was ingested as rainwater. In comparison with the ecologically similar Leadbeater's possums (129 g), sugar gliders had lower metabolic rates while active outside their nests (17.4 compared with 31.4 kJ/h for the possums), primarily because possums spent energy for activity 2.5 times faster than did sugar gliders. This suggests that gliding affords sugar gliders a considerable energetic saving, but portion of time abroad spent foraging and resting, and distribution, abundance and predictability of food resources may also account for this difference.


Rangifer ◽  
2000 ◽  
Vol 20 (2-3) ◽  
pp. 211 ◽  
Author(s):  
Geir Gotaas ◽  
Eric Milne ◽  
Paul Haggarty ◽  
Nicholas J.C. Tyler

The doubly labelled water (DLW) method was used to measure total energy expenditure (TEE) in three male reindeer (Rangifer tarandus tarandus) aged 22 months in winter (February) while the animals were living unrestricted at natural mountain pasture in northern Norway (69°20'N). The concentrations of 2H and l8O were measured in water extracted from samples of faeces collecred from the animals 0.4 and 11.2 days after injection of the isotopes. Calculated rates of water flux and CO2-production were adjusted to compensate for estimated losses of 2H in faecal solids and in methane produced by microbial fermentation of forage in the rumen. The mean specific TEE in the three animals was 3.057 W.kg-1 (range 2.436 - 3.728 W.kg1). This value is 64% higher than TEE measured by the DLW method in four captive, non-pregnant adult female reindeer in winter and probably mainly reflects higher levels of locomotor activity in the free-living animals. Previous estimates of TEE in free-living Rangifer in winter based on factorial models range from 3.038 W.kg-1 in female woodland caribou (R. t. caribou) to 1.813 W.kg-1 in female Svalbard reindeer (R. t. platyrhynchus). Thus, it seems that existing factorial models are unlikely to overestimate TEE in reindeer/caribou: they may, instead, be unduly conservative. While the present study serves as a general validation of the factorial approach, we suggest that the route to progress in the understanding of field energetics in wild ungulates is via application of the DLW method.


1991 ◽  
Vol 39 (3) ◽  
pp. 299 ◽  
Author(s):  
KA Nagy ◽  
SD Bradshaw ◽  
BT Clay

Field metabolic rates (FMRS) and water influx rates of free-living short-nosed bandicoots (Isoodon obesulus) were measured via the doubly labelled water technique. Bandicoots ranging in body mass from 775 to 1825 g (mean = 1230 g) had FMRS averaging 0.908 mL CO2 g-1 h-1, or 644 kJ d-1. This is about 2.7 times predicted basal metabolic rate. Water influx rates during the autumn measurement period were comparatively low, averaging 88.8 mL kg-1 d-1, or 103 mL d-1 for a 1230 g animal. Feeding rate (dry matter intake) was estimated to be 45 g d-1, assuming that the food was half invertebrates and half plant tissues (dry matter basis). Performed and metabolically produced water from the food can completely account for total water intake, indicating that bandicoots did not drink the rainwater or pond water that was available. The study population (estimated density = 0.63 bandicoots ha-1) consumed food at a rate of about 62 g fresh matter ha-1 d-1 (equivalent to 27 g dry matter or 605 kJ ha-1 d-1), which is similar to the food requirements of populations of small eutherian and marsupial insectivores in other habitats.


2011 ◽  
Vol 106 (S1) ◽  
pp. S158-S161 ◽  
Author(s):  
Øystein Ahlstrøm ◽  
Paula Redman ◽  
John Speakman

Hunting with dogs in winter conditions is practised in the Nordic countries. The present study aimed at determining daily energy expenditure (DEE) and body water turnover (BWT) by the doubly labelled water technique in eight hunting dogs (body-weight (BW) range 14–27 kg) working 3 h/d for 3 d ( − 6°C) on ground covered with 20–40 cm of loose snow, to provide information on energy and water requirements. The mean distance run during the hunting period was recorded by the global positioning system and averaged 19·4 km/d. DEE increased with increasing BW (P < 0·001) and varied between 7·20 and 16·6 MJ/d (mean 11·0 MJ/d) corresponding to 950–1350 kJ/kg BW0·75 per d (mean 1170 kJ/kg BW0·75 per d). The larger dogs tended to run longer than the smaller dogs and therefore spent more energy per kg BW0·75 but not significantly (P>0·05). DEE values determined were close to the values measured for hunting dogs running for 3 h/d in hot climates, suggesting that climate within the range of the two studies has little impact on energy expenditure per h running activity. Compared with the work of sled dogs per km travelled running on a track, the work performed by the hunting dogs was suggested to be higher when running in a loose snow layer. However, DEE was much lower because sled dogs ran for a longer distance each day. Mean BWT was 217 ml/kg BW0·75 or 19 ml/kJ metabolisable energy.


1990 ◽  
Vol 17 (6) ◽  
pp. 591 ◽  
Author(s):  
KA Nagy ◽  
GD Sanson ◽  
NK Jacobsen

Field metabolic rates (FMRs) and water influx rates were measured via the doubly labelled water method in wild Tasmanian pademelons and grey kangaroos living in the Jock Marshall Reserve at Clayton, Victoria, and in wild black-tailed deer free-ranging within a nature reserve at Davis, California. Deer expended more than 3 times more energy per day than similar sized grey kangaroos. Feeding rates required to achieve energy balance were estimated from FMRs along with an estimate of metabolizable energy content of the food. The estimated feeding rates for pademelons and kangaroos were combined with similar values for 5 other species of macropods to calculate an allometric (scaling) relationship for food requirements of macropod marsupials. Feeding rate had the following relationship to body mass: g food (DM) consumed per day = 0.20 g body mass0.79 (r2 = 0.94). The findings reported herein should be useful for predicting the approximate food requirements of free-ranging macropods and deer for purposes of ecological modelling, conservation efforts and management programmes.


2008 ◽  
Vol 22 (2) ◽  
pp. 245-254 ◽  
Author(s):  
C. E. Sparling ◽  
D. Thompson ◽  
M. A. Fedak ◽  
S. L. Gallon ◽  
J. R. Speakman

1995 ◽  
Vol 350 (1332) ◽  
pp. 119-131 ◽  

As heart rate ( f H ) can be used to determine the energy expenditure of black-browed albatrosses ( Diomedea melanophrys ) (Bevan et al. 1994), data loggers - recording f H and abdominal temperature ( T ab ) -were implanted into free-ranging black-browed albatrosses breeding at South Georgia. Five birds also had salt water switches (sws) attached to one leg to record when the birds were on the water, and two others had satellite transmitters attached to their back to determine the birds’ position at sea. The birds were released into their natural environment and recaptured, on average, 23 days later when the data loggers were removed. The f H data were then converted into estimates of energy expenditure (ee) using a previously derived equation. The mean EE during incubation and brooding were 2.22 and 2.42 W kg -1 , respectively. When the birds were foraging at sea, EE increased to between 4.63 and 5.80 W kg -1 , depending on the phase of the reproductive cycle. As the birds spent approximately the same length of time at the nest and at sea during incubation and brooding, the overall mean ee during these phases were 3.63 and 3.54 W kg -1 respectively. These rates are significantly lower than that during the chick-rearing phase when a high level of foraging EE is maintained almost continuously. By combining information from the sws with the f H data, it was possible to determine the EE of the birds when on the water (5.77 W kg -1 ) and when flying (6.21 W kg -1 ). These values are approximately twice the estimated basal metabolic rate (BMR) for the species. The energy costs of flight are half previous values, estimated using the doubly labelled water technique, because of the previous assumption that birds on the water have an EE equivalent to BMR. When the birds were on the nest, T ab was 39.3 + 0.4 °C and this changed very little with time. However, when they were at sea, T ab showed large variations, depending on the behaviour of the bird. Information from the sws indicated that all large drops (> 0.5 °C) in Tab occurred when the birds were on water. The mean minimum value reached was 32.5 + 2.0 °C. It is likely that ingestion of prey or water are the major causes of this decrease. This is the first study to have used f H extensively to determine the EE of a free-ranging marine bird. The advantages of using this technique are that data can be obtained over long durations with high resolution, permitting the EE of different activities to be estimated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjoy K. Deb ◽  
Eimear Dolan ◽  
Catherine Hambly ◽  
John R. Speakman ◽  
Olav Eftedal ◽  
...  

Commercial saturation divers are exposed to unique environmental conditions and are required to conduct work activity underwater. Consequently, divers’ physiological status is shown to be perturbed and therefore, appropriate strategies and guidance are required to manage the stress and adaptive response. This study aimed to evaluate the daily energy expenditure (DEE) of commercial saturation divers during a 21-day diving operation in the North Sea. Ten saturation divers were recruited during a diving operation with a living depth of 72 metres seawater (msw) and a maximum working dive depth of 81 msw. Doubly labelled water (DLW) was used to calculate DEE during a 10-day measurement period. Energy intake was also recorded during this period by maintaining a dietary log. The mean DEE calculated was 3030.9 ± 513.0 kcal/day, which was significantly greater than the mean energy intake (1875.3 ± 487.4 kcal; p = 0.005). There was also a strong positive correction correlation between DEE and total time spent performing underwater work (r = 0.7, p = 0.026). The results suggested saturation divers were in a negative energy balance during the measurement period with an intraindividual variability in the energy cost present that may be influenced by time spent underwater.


1989 ◽  
Vol 37 (5) ◽  
pp. 553 ◽  
Author(s):  
KA Nagy ◽  
AJ Bradley ◽  
KD Morris

Field metabolic rates (FMRS) and water influx rates were measured by means of doubly labelled water in free-ranging quokkas living on Rottnest I, and free-ranging tammar wallabies living on Garden I. Feeding rates were estimated from energy requirements. Quokkas ranging in body mass from 1.44 to 2.83 kg (mean 1.90 kg) had FMRS averaging 0.574 mL C02 (g.h)-', which is equivalent to 548 kJ d-'. Their rates of total water intake averaged 47.3 mL (kg.d)-', or 90.5 mL d-'. Estimated feeding rate was 54.8 g (dry matter) per day, and water ingested as part of the food (preformed and metabolically produced) can completely account for total water intake. We believe that quokkas did not drink water during our field measurements. Tammars ranging in body mass from 3.20 to 6.35 kg (mean 4.38 kg) had FMRS averaging 0.518 mL CO2 (g.h)-', which is equivalent to 1150 kJ d-'. Their rates of water influx averaged 57.5 mL (kg.d)-', or 270 mL d-', and their estimated feeding rate was 115 g (dry matter) per day. Tammars also probably did not drink free-standing water during our study. FMRs of quokkas averaged 1 .80 x basal metabolic rate (BMR), and FMRS of tammars averaged 1.87 x BMR; this difference is not significant. We estimate that the 5000 quokkas on Rottnest I. consume at least 100 000 kg of plant matter (dry mass) per year, and the 2173 tammars on Garden I. ingest more than 90 000 kg. Measurements of food availability are needed to permit evaluation of the relationship between food supply and demand for these two populations of macropod marsupials.


Sign in / Sign up

Export Citation Format

Share Document