scholarly journals Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease

2008 ◽  
Vol 105 (46) ◽  
pp. 17931-17936 ◽  
Author(s):  
Danyvid Olivares-Villagómez ◽  
Yanice V. Mendez-Fernandez ◽  
Vrajesh V. Parekh ◽  
Saif Lalani ◽  
Tiffaney L. Vincent ◽  
...  

Intestinal intraepithelial lymphocytes (IEL) bear a partially activated phenotype that permits them to rapidly respond to antigenic insults. However, this phenotype also implies that IEL must be highly controlled to prevent misdirected immune reactions. It has been suggested that IEL are regulated through the interaction of the CD8αα homodimer with the thymus leukemia (TL) antigen expressed by intestinal epithelial cells. We have generated and characterized mice genetically-deficient in TL expression. Our findings show that TL expression has a critical role in maintaining IEL effector functions. Also, TL deficiency accelerated colitis in a genetic model of inflammatory bowel disease. These findings reveal an important regulatory role of TL in controlling IEL function and intestinal inflammation.

2019 ◽  
Vol 317 (2) ◽  
pp. G98-G107 ◽  
Author(s):  
Sumeet Solanki ◽  
Samantha N. Devenport ◽  
Sadeesh K. Ramakrishnan ◽  
Yatrik M. Shah

Hypoxia is a notable feature of inflammatory bowel disease and chronic induction of hypoxia-inducible factor (HIF)-1α and HIF-2α (endothelial PAS domain protein 1, EPAS1) play important, but opposing, roles in its pathogenesis. While activation of HIF-1α decreases intestinal inflammation and is beneficial in colitis, activation of HIF-2α exacerbates colitis and increases colon carcinogenesis in animal models, primarily due to the role of epithelial HIF-2α in mounting a potent inflammatory response. Previous work from our laboratory showed that mice overexpressing intestinal epithelial HIF-2α led to massive intestinal inflammation and decreased survival. As oxygen homeostasis and HIFs are critical in embryonic development, it is not clear whether the observed intestinal inflammatory response was secondary to developmental defects. To address this question, the present study used a mouse model to temporally modulate expression of intestinal epithelial HIF-2α to assess its role in mediating inflammatory response. Remarkably, activation of HIF-2α in intestinal epithelial cells in adult mice increased expression of proinflammatory mediators; however, no decrease in survival was observed. Furthermore, in an acute model of colitis, activation of HIF-2α was sufficient to exacerbate colitis. These data confirm our previous finding that epithelial HIF-2α mediates inflammatory response and demonstrates that activation of HIF-2α is sufficient to exacerbate colitis.NEW & NOTEWORTHY Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestinal tract. Hypoxia and activation of its downstream transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are notable features of IBD. HIF-1α has well-characterized protective roles in IBD; however, the role of HIF-2α has been less studied. Using novel HIF-2α mouse models, we show that activation of HIF-2α in intestinal epithelial cells is sufficient to exacerbate colitis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaohui Xu ◽  
Ruitao Liu ◽  
Ling Huang ◽  
Yuxin Xu ◽  
Mingmin Su ◽  
...  

Background. Pyroptosis, a novel form of inflammatory programmed cell death, was recently found to be a cause of mucosal barrier defect. In our pervious study, CD147 expression was documented to increase in intestinal tissue of inflammatory bowel disease (IBD). Objective. The aim of this study was to determine the function of serum CD147 in pyroptosis. Methods. The study group consisted of 96 cases. The centration of CD147, IL-1β, and IL-18 levels in serum was assessed by ELISA. Real-time PCR and WB were performed to analyze the effect of CD147 on pyroptosis. Results. In this study, our results showed that CD147 induced cell pyroptosis in intestinal epithelial cells (IECs) by enhancement of IL-1β and IL-18 expression and secretion in IECs, which is attributed to activation of inflammasomes, including caspase-1 and GSDMD as well as GSDME, leading to aggregate inflammatory reaction. Mechanically, CD147 promoted phosphorylation of NF-κB p65 in IECs, while inhibition of NF-κB activity by the NF-κB inhibitor BAY11-7082 reversed the effect of CD147 on IL-1β and IL-18 secretion. Most importantly, serum CD147 level is slightly clinically correlated with IL-1β, but not IL-18 level. Conclusion. These findings revealed a critical role of CD147 in the patients with IBD, suggesting that blockade of CD147 may be a novel therapeutic strategy for the patients with IBD.


2021 ◽  
Vol 75 (1) ◽  
pp. 20-28
Author(s):  
Vladimír Teplan ◽  
Milan Lukáš

The incidence and prevalence of overweight and obesity has dramatically increased in the last decades and is generally considered to be global pandemics. The incidence of inflammatory bowel disease (IBD) is rising parallel with overweight and obesity. Contrary to a conventional believe, about 15–40% patients with IBD are obese, which can contribute to the development and course of IBD, especially in Crohn’s disease. Although the findings of some cohort studies are still conflicting, recent results indicate a special role of visceral adipose tissue and particularly mesenteric adipose tissue known as creeping fat, leading to intestinal inflammation. The involvement of altered adipocyte function and deregulated production of adipokines such as leptin and adiponectin has been suggested in the pathogenesis of IBD. The emerging role of Western diet and microbiota can also open new possibilities in IBD management. The effect of obesity on the IBD-related therapy remains to be studied. The finding that obesity results in suboptimal response to the therapy, potentially promoting rapid clearance of biologic agents and thus leading to their low concentrations, has a great importance. Obesity also makes IBD colorectal surgery technically challenging and might increase a risk of perioperative complications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhuo Xie ◽  
Mudan Zhang ◽  
Gaoshi Zhou ◽  
Lihui Lin ◽  
Jing Han ◽  
...  

AbstractThe Hedgehog (Hh) signalling pathway plays a critical role in the growth and patterning during embryonic development and maintenance of adult tissue homeostasis. Emerging data indicate that Hh signalling is implicated in the pathogenesis of inflammatory bowel disease (IBD). Current therapeutic treatments for IBD require optimisation, and novel effective drugs are warranted. Targeting the Hh signalling pathway may pave the way for successful IBD treatment. In this review, we introduce the molecular mechanisms underlying the Hh signalling pathway and its role in maintaining intestinal homeostasis. Then, we present interactions between the Hh signalling and other pathways involved in IBD and colitis-associated colorectal cancer (CAC), such as the Wnt and nuclear factor-kappa B (NF-κB) pathways. Furthermore, we summarise the latest research on Hh signalling associated with the occurrence and progression of IBD and CAC. Finally, we discuss the future directions for research on the role of Hh signalling in IBD pathogenesis and provide viewpoints on novel treatment options for IBD by targeting Hh signalling. An in-depth understanding of the complex role of Hh signalling in IBD pathogenesis will contribute to the development of new effective therapies for IBD patients.


2020 ◽  
Vol 295 (13) ◽  
pp. 4237-4251 ◽  
Author(s):  
Jie Zhang ◽  
Min Xu ◽  
Weihua Zhou ◽  
Dejian Li ◽  
Hong Zhang ◽  
...  

Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1−/− mice, DJ-1−/−p53−/− mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1−/− mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.


2011 ◽  
Vol 11 ◽  
pp. 1536-1547 ◽  
Author(s):  
Donata Lissner ◽  
Britta Siegmund

Inflammasomes are intracellular multiprotein complexes that coordinate the maturation of interleukin (IL)-1β and IL-18 in response to pathogens and metabolic danger. Both cytokines have been linked to intestinal inflammation. However, recently evolving concepts ascribe a major role to the inflammasome in maintaining intestinal homeostasis. This review recapitulates its position in the development of inflammatory bowel disease, thereby outlining a model in which hypo- as well as hyperfunctionality can lead to an imbalance of the system, depending on the specific cell population affected. In the epithelium, the inflammasome is essential for regulation of permeability and epithelial regeneration through sensing of commensal microbes, while excessive inflammasome activation within the lamina propria contributes to severe intestinal inflammation.


2017 ◽  
Vol 313 (3) ◽  
pp. G256-G264 ◽  
Author(s):  
Ishita Chatterjee ◽  
Anoop Kumar ◽  
Rosa María Castilla-Madrigal ◽  
Oscar Pellon-Cardenas ◽  
Ravinder K. Gill ◽  
...  

SLC26A3 [downregulated in adenoma (DRA)] plays a key role in mammalian intestinal NaCl absorption, in that it mediates apical membrane Cl−/[Formula: see text] exchange. DRA function and expression are significantly decreased in diarrhea associated with inflammatory bowel disease. DRA is also considered to be a marker of cellular differentiation and is predominantly expressed in differentiated epithelial cells. Caudal-type homeobox protein-2 (CDX2) is known to regulate genes involved in intestinal epithelial differentiation and proliferation. Reduced expression of both DRA and CDX2 in intestinal inflammation prompted us to study whether the DRA gene is directly regulated by CDX2. Our initial studies utilizing CDX2 knockout (CDX2fV/fV;Cre+) mice showed a marked reduction in DRA mRNA and protein levels in proximal and distal colon. In silico analysis of the DRA promoter showed two consensus sites for CDX2 binding. Therefore, we utilized Caco-2 cells as an in vitro model to examine if DRA is a direct target of CDX2 regulation. siRNA-mediated silencing of CDX2 in Caco-2 cells resulted in a marked (~50%) decrease in DRA mRNA and protein levels, whereas ectopic overexpression of CDX2 upregulated DRA expression and also stimulated DRA promoter activity, suggesting transcriptional regulation. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated direct binding of CDX2 to one of the two putative CDX2 binding sites in the DRA promoter (+645/+663). In summary, our studies, for the first time, demonstrate transcriptional regulation of DRA expression by CDX2, implying that reduced expression of DRA in inflammatory bowel disease-associated diarrhea may, in part, be due to downregulation of CDX2 in the inflamed mucosa. NEW & NOTEWORTHY SLC26A3 [downregulated in adenoma (DRA)] mediates intestinal luminal NaCl absorption and is downregulated in inflammatory bowel disease-associated diarrhea. Since both DRA and caudal-type homeobox protein-2 (CDX2) are reduced in intestinal inflammation and the DRA promoter harbors CDX2 binding sites, we examined whether the DRA gene is regulated by CDX2. Our studies, for the first time, demonstrate transcriptional regulation of DRA expression by CDX2 via direct binding to the DRA promoter, suggesting that reduced expression of DRA in inflammatory bowel disease-associated diarrhea could, in part, be attributed to downregulation of CDX2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yashar Houshyar ◽  
Luca Massimino ◽  
Luigi Antonio Lamparelli ◽  
Silvio Danese ◽  
Federica Ungaro

Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rita Lippai ◽  
Apor Veres-Székely ◽  
Erna Sziksz ◽  
Yoichiro Iwakura ◽  
Domonkos Pap ◽  
...  

AbstractRecently the role of Parkinson’s disease 7 (PARK7) was studied in gastrointestinal diseases, however, the complex role of PARK7 in the intestinal inflammation is still not completely clear. Expression and localization of PARK7 were determined in the colon biopsies of children with inflammatory bowel disease (IBD), in the colon of dextran sodium sulphate (DSS) treated mice and in HT-29 colonic epithelial cells treated with interleukin (IL)-17, hydrogen peroxide (H2O2), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β or lipopolysaccharide (LPS). Effect of PARK7 on the synthesis of IBD related cytokines was determined using PARK7 gene silenced HT-29 cells and 3,4,5-trimethoxy-N-(4-(8-methylimidazo(1,2-a)pyridine-2-yl)phenyl)benzamide (Comp23)—compound increasing PARK7 activity—treated mice with DSS-colitis. PARK7 expression was higher in the mucosa of children with Crohn’s disease compared to that of controls. While H2O2 and IL-17 treatment increased, LPS, TNF-α or TGF-β treatment decreased the PARK7 synthesis of HT-29 cells. PARK7 gene silencing influenced the synthesis of IL1B, IL6, TNFA and TGFB1 in vitro. Comp23 treatment attenuated the ex vivo permeability of colonic sacs, the clinical symptoms, and mucosal expression of Tgfb1, Il1b, Il6 and Il10 of DSS-treated mice. Our study revealed the role of PARK7 in the regulation of IBD-related inflammation in vitro and in vivo, suggesting its importance as a future therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document