scholarly journals IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter

2009 ◽  
Vol 107 (2) ◽  
pp. 872-877 ◽  
Author(s):  
L. L. Kis ◽  
D. Salamon ◽  
E. K. Persson ◽  
N. Nagy ◽  
F. A. Scheeren ◽  
...  
Keyword(s):  
B Cells ◽  
Type I ◽  
Type Ii ◽  
2010 ◽  
Vol 79 (3) ◽  
pp. 1363-1373 ◽  
Author(s):  
Jianchun Xiao ◽  
Lorraine Jones-Brando ◽  
C. Conover Talbot ◽  
Robert H. Yolken

ABSTRACTStrain type is one of the key factors suspected to play a role in determining the outcome ofToxoplasmainfection. In this study, we examined the transcriptional profile of human neuroepithelioma cells in response to representative strains ofToxoplasmaby using microarray analysis to characterize the strain-specific host cell response. The study of neural cells is of interest in light of the ability ofToxoplasmato infect the brain and to establish persistent infection within the central nervous system. We found that the extents of the expression changes varied considerably among the three strains. Neuroepithelial cells infected withToxoplasmatype I exhibited the highest level of differential gene expression, whereas type II-infected cells had a substantially smaller number of genes which were differentially expressed. Cells infected with type III exhibited intermediate effects on gene expression. The three strains also differed in the individual genes and gene pathways which were altered following cellular infection. For example, gene ontology (GO) analysis indicated that type I infection largely affects genes related to the central nervous system, while type III infection largely alters genes which affect nucleotide metabolism; type II infection does not alter the expression of a clearly defined set of genes. Moreover, Ingenuity Pathways Analysis (IPA) suggests that the three lineages differ in the ability to manipulate their host; e.g., they employ different strategies to avoid, deflect, or subvert host defense mechanisms. These observed differences may explain some of the variation in the neurobiological effects of different strains ofToxoplasmaon infected individuals.


2003 ◽  
Vol 88 (2) ◽  
pp. 655-662 ◽  
Author(s):  
Sally J. Krajewski ◽  
Ty W. Abel ◽  
Mary Lou Voytko ◽  
Naomi E. Rance

In the present study, we compared the morphology and distribution of neurons expressing GnRH gene transcripts in the hypothalamus and forebrain of the cynomolgus monkey to that of the human. As in the human, three subtypes of GnRH neurons were identified. Type I GnRH neurons were small, oval cells with high levels of gene expression and were located within the basal hypothalamus. Type II GnRH neurons were small and sparsely labeled and were widely scattered in the hypothalamus, midline nuclei of the thalamus, and extended amygdala. Type III neurons displayed magnocellular morphology and intermediate labeling intensity and were located in the nucleus basalis of Meynert, caudate, and amygdala. In a second experiment, we determined the effect of estrogen or estrogen plus progesterone on the gene expression of GnRH neurons in the brains of young, ovariectomized cynomolgus monkeys. We report that hormone treatment resulted in a significant decrease in GnRH mRNA in type I neurons within the basal hypothalamus of ovariectomized monkeys. In contrast, there was no effect of hormone treatment on the gene expression of type III GnRH neurons in the nucleus basalis of Meynert. The present findings provide evidence that the increase in gene expression of type I GnRH neurons in postmenopausal women is secondary to the ovarian failure of menopause. The differential responses of type I and III GnRH neurons to hormone treatment provide additional evidence that distinct subpopulations of neurons expressing GnRH mRNA exist in the primate hypothalamus.


2011 ◽  
Vol 80 (3) ◽  
pp. 968-974 ◽  
Author(s):  
Rachel D. Hill ◽  
Julia S. Gouffon ◽  
Arnold M. Saxton ◽  
Chunlei Su

Toxoplasma gondiiis the causative agent of toxoplasmosis in human and animals. In a mouse model,T. gondiistrains can be divided into three groups, including the virulent, intermediately virulent, and nonvirulent. The clonal type I, II, and IIIT. gondiistrains belong to these three groups, respectively. To better understand the basis of virulence phenotypes, we investigated mouse gene expression responses to the infection of differentT. gondiistrains at day 5 after intraperitoneal inoculation with 500 tachyzoites. The transcriptomes of mouse peritoneal cells showed that 1,927, 1,573, and 1,009 transcripts were altered more than 2-fold by type I, II, and III infections, respectively, and that the majority of altered transcripts were shared. Overall transcription patterns were similar in type I and type II infections, and both had greater changes than infection with type III. Quantification of parasite burden in mouse spleens showed that the burden with type I infection was 1,000 times higher than that of type II and that the type II burden was 20 times higher than that of type III. Fluorescence-activated cell sorting revealed that type I and II infections had comparable macrophage populations, and both were higher than the population with type III infection. In addition, type I infection had a higher percentage of neutrophils than type II and III infections. Taken together, these results suggested that there is a common gene expression response toT. gondiiinfection in mice. This response is further modified by parasite strain-specific factors that determine their distinct virulence phenotypes.


2019 ◽  
Author(s):  
Li Yu ◽  
Keats Shwab ◽  
Rachel D Hill ◽  
Xing-Quan zhu ◽  
Julia S Gouffon ◽  
...  

Abstract Background: Toxoplasma gondii is genetically diverse and different genotypes differ markedly in phenotype. The present study aims to define transcriptional patterns and biological processes that characterize host response to distinct strains of T. gondii. Methods: We conducted a time course study of gene expression microarray in mice during acute infection (days 1 to 7) with the highly virulent type I (GT1 strain), intermediately virulent type II (PTG strain) and non-virulent type III (CTG strain) parasites. Results: Overall, the number of genes affected increased from day 1 to day 5, and decreased on day 7. However, type III and type II infections up-regulated more genes than did type I at the very early phase, whereas type I infection up-regulated more genes at the late phase. Gene ontology (GO) analysis showed that the genes related to inflammatory and immune response were mostly affected and the majority were up-regulated, with type III infection inducing a higher degree of change and affecting more genes than did type I at the early phase. However, this pattern was reversed at the late phase. The change of expression during type II infection was between that of types I and III. Many genes associated with inflammatory and immune responses showed bimodal effects, with the first peak expression mostly at day 3 and then a second peak expression mostly at day 5. Several differentially expressed genes, including INF-γ, iNOS, CXCL10/IP-10, and numerous immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) were previously experimentally confirmed important host factors in controlling T. gondii infection. Bioinformatic analysis of biological pathways enriched during infection revealed upregulation of pathways relating to cell-mediated immunity and the inflammatory response during all three infection types, though such enrichment was most expansive and pronounced during type I infection, and much less pronounced during type III infection. Conclusions: The findings in our study revealed dynamic differences of gene expression and different pathways of immune response in mice infected with three distinct strains of T. gondii.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chen Li ◽  
Ao-Fei Liu ◽  
Han-Cheng Qiu ◽  
Xianli Lv ◽  
Ji Zhou ◽  
...  

Abstract Background Treatment of perforator involving aneurysm (piAN) remains a challenge to open and endovascular neurosurgeons. Our aim is to demonstrate a primary outcome of endovascular therapy for piANs with the use of perforator preservation technologies (PPT) based on a new neuro-interventional classification. Methods The piANs were classified into type I: aneurysm really arises from perforating artery, type II: saccular aneurysm involves perforating arteries arising from its neck (IIa) or dome (IIb), and type III: fusiform aneurysm involves perforating artery. Stent protection technology of PPT was applied in type I and III aneurysms, and coil-basket protection technology in type II aneurysms. An immediate outcome of aneurysmal obliteration after treatment was evaluated (satisfactory obliteration: the saccular aneurysm body is densely embolized (I), leaving a gap in the neck (IIa) or dome (IIb) where the perforating artery arising; fusiform aneurysm is repaired and has a smooth inner wall), and successful perforating artery preservation was defined as keeping the good antegrade flow of those perforators on postoperative angiography. The periprocedural complication was closely monitored, and clinical and angiographic follow-ups were performed. Results Six consecutive piANs (2 ruptured and 4 unruptured; 1 type I, 2 type IIa, 2 type IIb, and 1 type III) in 6 patients (aged from 43 to 66 years; 3 males) underwent endovascular therapy between November 2017 and July 2019. The immediate angiography after treatment showed 6 aneurysms obtained satisfactory obliteration, and all of their perforating arteries were successfully preserved. During clinical follow-up of 13–50 months, no ischemic or hemorrhagic event of the brain occurred in the 6 patients, but has one who developed ischemic event in the territory of involving perforators 4 h after operation and completely resolved within 24 h. Follow-up angiography at 3 to 10M showed patency of the parent artery and perforating arteries of treated aneurysms, with no aneurysmal recurrence. Conclusions Our perforator preservation technologies on the basis of the new neuro-interventional classification seem feasible, safe, and effective in protecting involved perforators while occluding aneurysm.


2021 ◽  
Vol 22 (1) ◽  
pp. 429
Author(s):  
Luca Bini ◽  
Domitille Schvartz ◽  
Chiara Carnemolla ◽  
Roberta Besio ◽  
Nadia Garibaldi ◽  
...  

Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non–collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.


2020 ◽  
pp. 1-15
Author(s):  
Zhiwei Yuan ◽  
Wen Guo ◽  
Dan Lyu ◽  
Yuanlin Sun

Abstract The filter-feeding organ of some extinct brachiopods is supported by a skeletal apparatus called the brachidium. Although relatively well studied in Atrypida and Athyridida, the brachidial morphology is usually neglected in Spiriferida. To investigate the variations of brachidial morphology in Spiriferida, 65 species belonging to eight superfamilies were analyzed. Based on the presence/absence of the jugal processes and normal/modified primary lamellae of the spiralia, four types of brachidium are recognized. Type-I (with jugal processes) and Type-II (without jugal processes), both having normal primary lamellae, could give rise to each other by losing/re-evolving the jugal processes. Type-III, without jugal processes, originated from Type-II through evolution of the modified lateral-convex primary lamellae, and it subsequently gave rise to Type-IV by evolving the modified medial-convex primary lamellae. The evolution of brachidia within individual evolutionary lineages must be clarified because two or more types can be present within a single family. Type-III and Type-IV are closely associated with the prolongation of the crura, representing innovative modifications of the feeding apparatus in response to possible shift in the position of the mouth towards the anterior, allowing for more efficient feeding on particles entering the mantle cavity from the anterior gape. Meanwhile, the modified primary lamellae adjusted/regulated the feeding currents. The absence of spires in some taxa with Type-IV brachidium might suggest that they developed a similar lophophore to that in some extant brachiopods, which can extend out of the shell.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1080
Author(s):  
Min Zhao ◽  
Zhenbo Ning ◽  
Baicun Wang ◽  
Chen Peng ◽  
Xingyu Li ◽  
...  

The evolution and application of intelligence have been discussed from perspectives of life, control theory and artificial intelligence. However, there has been no consensus on understanding the evolution of intelligence. In this study, we propose a Tri-X Intelligence (TI) model, aimed at providing a comprehensive perspective to understand complex intelligence and the implementation of intelligent systems. In this work, the essence and evolution of intelligent systems (or system intelligentization) are analyzed and discussed from multiple perspectives and at different stages (Type I, Type II and Type III), based on a Tri-X Intelligence model. Elemental intelligence based on scientific effects (e.g., conscious humans, cyber entities and physical objects) is at the primitive level of intelligence (Type I). Integrated intelligence formed by two-element integration (e.g., human-cyber systems and cyber-physical systems) is at the normal level of intelligence (Type II). Complex intelligence formed by ternary-interaction (e.g., a human-cyber-physical system) is at the dynamic level of intelligence (Type III). Representative cases are analyzed to deepen the understanding of intelligent systems and their future implementation, such as in intelligent manufacturing. This work provides a systematic scheme, and technical supports, to understand and develop intelligent systems.


Sign in / Sign up

Export Citation Format

Share Document