scholarly journals Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice

2014 ◽  
Vol 112 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Xian Jun Song ◽  
Takeshi Kuroha ◽  
Madoka Ayano ◽  
Tomoyuki Furuta ◽  
Keisuke Nagai ◽  
...  

Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1’s allelic variations to a 1.2-kb region upstream of the gene body, which is consistent with its function as a positive regulator of the traits. Elevated OsglHAT1 expression enhances grain weight and yield by enlarging spikelet hulls via increasing cell number and accelerating grain filling, and increases global acetylation levels of histone H4. OsglHAT1 localizes to the nucleus, where it likely functions through the regulation of transcription. Despite its positive agronomical effects on grain weight, yield, and plant biomass, the rare allele elevating OsglHAT1 expression has so far escaped human selection. Our findings reveal the first example, to our knowledge, of a QTL for a yield component trait being due to a chromatin modifier that has the potential to improve crop high-yield breeding.

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Cailong Xu ◽  
Ruidong Li ◽  
Wenwen Song ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Increasing planting density is one of the key management practices to enhance soybean yield. A 2-yr field experiment was conducted in 2018 and 2019 including six planting densities and two soybean cultivars to determine the effects of planting density on branch number and yield, and analyze the contribution of branches to yield. The yield of ZZXA12938 was 4389 kg ha−1, which was significantly higher than that of ZH13 (+22.4%). In combination with planting year and cultivar, the soybean yield increased significantly by 16.2%, 31.4%, 41.4%, and 46.7% for every increase in density of 45,000 plants ha−1. Yield will not increase when planting density exceeds 315,000 plants ha−1. A correlation analysis showed that pod number per plant increased with the increased branch number, while pod number per unit area decreased; thus, soybean yield decreased. With the increase of branch number, the branch contribution to yield increased first, and then plateaued. ZH13 could produce a high yield under a lower planting density due to more branches, while ZZXA12938 had a higher yield potential under a higher planting density due to the smaller branch number and higher tolerance to close planting. Therefore, seed yield can be increased by selecting cultivars with a little branching capacity under moderately close planting.


1999 ◽  
Vol 19 (1) ◽  
pp. 855-863 ◽  
Author(s):  
Keiko Ikeda ◽  
David J. Steger ◽  
Anton Eberharter ◽  
Jerry L. Workman

ABSTRACT Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 558
Author(s):  
Xing Huang ◽  
Su Jang ◽  
Backki Kim ◽  
Zhongze Piao ◽  
Edilberto Redona ◽  
...  

Rice yield is a complex trait that is strongly affected by environment and genotype × environment interaction (GEI) effects. Consideration of GEI in diverse environments facilitates the accurate identification of optimal genotypes with high yield performance, which are adaptable to specific or diverse environments. In this study, multiple environment trials were conducted to evaluate grain yield (GY) and four yield-component traits: panicle length, panicle number, spikelet number per panicle, and thousand-grain weight. Eighty-nine rice varieties were cultivated in temperate, subtropical, and tropical regions for two years. The effects of both GEI (12.4–19.6%) and environment (23.6–69.6%) significantly contributed to the variation of all yield-component traits. In addition, 37.1% of GY variation was explained by GEI, indicating that GY performance was strongly affected by the different environmental conditions. GY performance and genotype stability were evaluated using simultaneous selection indexing, and 19 desirable genotypes were identified with high productivity and broad adaptability across temperate, subtropical, and tropical conditions. These optimal genotypes could be recommended for cultivation and as elite parents for rice breeding programs to improve yield potential and general adaptability to climates.


2021 ◽  
Vol 15 (5) ◽  
pp. 396-407
Author(s):  
Mojiao Zhao ◽  
Chao Zhang ◽  
Dong Zhang ◽  
Siyu Zhu ◽  
Tianjiao Liu ◽  
...  

Inhibition of protein disulfide isomerase (PDI) has been attempted as a promising anti-cancer strategy. However, there is still no currently available PDI inhibitors approved for clinical use. Here, we isolated seven high yield alkaloids from Stephaniae tetrandrae Radix (STR), a medical herb frequently prescribed in anti-tumor condition, and identified two potent natural PDI inhibitors, dicentrine and dicentrinone. Among the seven alkaloids isolated, dicentrinone (1), dicentrine (2), tetrandrine (4), and fangchinoline (5) could significantly reduce cell viability in a dosage dependent manner detected by MTT assay in human hepatoma cells. To examine whether the candidate compounds are potent PDI inhibitors, we performed insulin turbidity assay and found dicentrine and dicentrinone, but not tetrandrine and fangchinoline, could effectively inhibit PDI activity, with IC50 of 56.70 μM and 43.95 μM respectively. Meanwhile, dicentrine and dicentrinone failed to further reduce the cell number index when co-treated with siRNA of PDI, suggesting the compounds behave as PDI inhibitors. Furthermore, dicentrinone and dicentrine have been successfully docked to the active pocket of PDI (PDB #3UEM) by molecular docking, suggesting the existence of physical interaction between compounds and PDI. Our results suggested that dicentrine and dicentrinone may be developed into safe PDI inhibitors.


2005 ◽  
Vol 62 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Giovani Benin ◽  
Fernando Irajá Félix de Carvalho ◽  
Antônio Costa de Oliveira ◽  
Claudir Lorencetti ◽  
Igor Pires Valério ◽  
...  

Several studies have searched for higher efficiency on plant selection in generations bearing high frequency of heterozygotes. This work aims to compare the response of direct selection for grain yield, indirect selection through average grain weight and combined selection for higher yield potential and average grain weight of oat plants (Avena sativa L.), using the honeycomb breeding method. These strategies were applied in the growing seasons of 2001 and 2002 in F3 and F4 populations, respectively, in the crosses UPF 18 CTC 5, OR 2 <FONT FACE=Symbol>´</FONT> UPF 7 and OR 2 <FONT FACE=Symbol>´</FONT> UPF 18. The ten best genetic combinations obtained for each cross and selection strategy were evaluated in greenhouse yield trials. Selection of plants with higher yield and average grain weight might be performed on early generations with high levels of heterozygosis. The direct selection for grain yield and indirect selection for average grain weight enabled to increase the average of characters under selection. However, genotypes obtained through direct selection presented lower average grain weight and those obtained through the indirect selection presented lower yield potential. Selection strategies must be run simultaneously to combine in only one genotype high yield potential and large grain weight, enabling maximum genetic gain for both characters.


1998 ◽  
Vol 130 (3) ◽  
pp. 287-295 ◽  
Author(s):  
C. L. MORGAN

Twenty-eight F1 hybrids of wheat and their parents were grown in field trials at Trumpington, Cambridge during 1986/87 and 1987/88. They were derived from crosses between seven ‘modern’ varieties, used as female parents, and either two ‘old’ (Squareheads Master and Partridge) or two ‘modern’ varieties (Bert and Motto), which were used as male parents. Grain yield, yield components, biomass and height were determined. The male parents were chosen to provide contrasting phenotypes and genetic backgrounds for the F1 hybrids. Mid-parent advantage, the increase of a hybrid for a given character above the mean of its parents, and heterosis, the increase of a hybrid above the ‘better’ parent for that character, were calculated. Most F1 hybrids showed mid-parent advantage for the characters studied. This tended to be greatest for hybrids derived from parents with the largest phenotypic differences in that character. In contrast, where heterosis occurred it tended to be greatest where the phenotypic difference between the parents was least. This suggests that the beneficial effects of hybridization, resulting from the dispersion of dominant genes between the parents, was insufficient to overcome the detrimental effects of other genes present where the ‘less good’ parent was substantially lower than the ‘better’ parent. Hybrids derived from the ‘modern’ male parents had greater heterosis for grain yield and mean grain weight than those from the ‘old’ parents. Of the yield components, positive heterosis for mean grain weight resulted in heavier seeds and was the most important yield component in determining heterosis in grain yield. Heterosis for the number of grains/ear was small or did not differ significantly from zero while number of ears/m2 showed negative heterosis resulting in fewer ears/m2 in the hybrids.


2016 ◽  
Vol 61 (2) ◽  
pp. 113-125
Author(s):  
Gordana Brankovic ◽  
Dejan Dodig ◽  
Desimir Knezevic ◽  
Vesna Kandic ◽  
Jovan Pavlov

The research was aimed at examining variability, variance components, broadsense heritability (h2), expected genetic advance of thousand grain weight (TGW) and grain number per spike (GNS) of 15 genotypes of bread wheat and 15 genotypes of durum wheat. Field trials were carried out during 2010-2011 and 2011-2012 growing seasons at the three sites: Rimski Sancevi, Zemun Polje and Padinska Skela. Results of this investigation showed that the genetic component of variance (?2 g) was predominant for TGW of bread and durum wheat and for GNS of bread wheat. The genotype ? environment interaction (?2 ge) component of phenotypic variance was 8.72 times higher than ?2 g for GNS of durum wheat and pointed to the greater instability of durum wheat genotypes. h2 was very high (>90%) for TGW and GNS of bread wheat, high for TGW of durum wheat - 87.3% and low for GNS of durum wheat - 39.5%. Considering the high values obtained for h2 - 96.4% and the highest value for expected genetic advance as percent of mean (GAM) - 19.3% for TGW of bread wheat, the success of selection for desired values of this yield component can be anticipated. The success of selection cannot be predicted for GNS of durum wheat due to low values obtained for h2 and GAM of 39.5% and 2.8%, respectively.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 50-55
Author(s):  
Domagoj Stepinac ◽  
Hrvoje Šarčević ◽  
Ivica Buhiniček ◽  
Mirko Jukić ◽  
Bojan Marković ◽  
...  

Thousand kernel weight (TKW) is an important yield component trait affected by the environmental conditions. This study’s objectives were to determine an environmental variability for the TKW in 32 maize hybrids, sorted in four FAO maturity groups (FAO300, 400, 500 and 600), and to compare 12 environments in Croatia (six locations in two years) according to the joint linear regression and stability analyses across the maturity groups. In general, the effects of the environment, genotype, and their interaction (GEI) were significant. A three-factor ANOVA revealed the greatest and highly significant year effect, while the location effect was non-significant across all four FAO groups. A stability analysis did not detect any preferences with regard to the locations and trends across the FAO groups. It indicates that all locations in the Pannonian region included in this study were suitable for an evaluation of the TKW in maize genotypes belonging to all maturity groups. The TKW seems to be an appropriate yield-component trait for maize breeding due to a high heritability and linear GEI nature.


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


Sign in / Sign up

Export Citation Format

Share Document