scholarly journals Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

2015 ◽  
Vol 112 (23) ◽  
pp. 7123-7128 ◽  
Author(s):  
Tuija Jokinen ◽  
Torsten Berndt ◽  
Risto Makkonen ◽  
Veli-Matti Kerminen ◽  
Heikki Junninen ◽  
...  

Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

2018 ◽  
Vol 18 (9) ◽  
pp. 6171-6186 ◽  
Author(s):  
Penglin Ye ◽  
Yunliang Zhao ◽  
Wayne K. Chuang ◽  
Allen L. Robinson ◽  
Neil M. Donahue

Abstract. We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m−3, these mass yields are 2–3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around −0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.


2020 ◽  
Vol 20 (16) ◽  
pp. 10029-10045 ◽  
Author(s):  
James Brean ◽  
David C. S. Beddows ◽  
Zongbo Shi ◽  
Brice Temime-Roussel ◽  
Nicolas Marchand ◽  
...  

Abstract. Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative forcing and have significant effects on human health. New particle formation (NPF) is the process by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes significantly to particle numbers in the atmosphere, accounting for approximately 50 % of cloud condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in north-eastern Spain utilising particle counting instruments down to 1.9 nm and a Nitrate Chemical Ionisation Atmospheric Pressure interface Time of Flight Mass Spectrometer (CI-APi-ToF). The rate of formation of new particles is seen to increase linearly with sulfuric acid concentration, although particle formation rates fall short of chamber studies of H2SO4–DMA–H2O while exceeding those of H2SO4–BioOxOrg–H2O nucleation, although a role of highly oxygenated molecules (HOMs) cannot be ruled out. The sulfuric acid dimer : monomer ratio is significantly lower than that seen in experiments involving sulfuric acid and dimethylamine (DMA) in chambers, indicating that stabilisation of sulfuric acid clusters by bases is weaker in this dataset than in chambers, either due to rapid evaporation due to high summertime temperatures or limited pools of stabilising amines. Such a mechanism cannot be verified in these data, as no higher-order H2SO4–amine clusters nor H2SO4–HOM clusters were measured. The high concentrations of HOMs arise from isoprene, alkylbenzene, monoterpene and polycyclic aromatic hydrocarbon (PAH) oxidation, with alkylbenzenes providing greater concentrations of HOMs due to significant local sources. The concentration of these HOMs shows a dependence on temperature. The organic compounds measured primarily fall into the semivolatile organic compound (SVOC) volatility class arising from alkylbenzene and isoprene oxidation. Low-volatility organic compounds (LVOCs) largely arise from oxidation of alkylbenzenes, PAHs and monoterpenes, whereas extremely low-volatility organic compounds (ELVOCs) arise from primarily PAH and monoterpene oxidation. New particle formation without growth past 10 nm is also observed, and on these days oxygenated organic concentrations are lower than on days with growth by a factor of 1.6, and thus high concentrations of low-volatility oxygenated organics which primarily derive from traffic-emitted volatile organic compounds (VOCs) appear to be a necessary condition for the growth of newly formed particles in Barcelona. These results are consistent with prior observations of new particle formation from sulfuric acid–amine reactions in both chambers and the real atmosphere and are likely representative of the urban background of many European Mediterranean cities. A role for HOMs in the nucleation process cannot be confirmed or ruled out, and there is strong circumstantial evidence of the participation of HOMs across multiple volatility classes in particle growth.


2014 ◽  
Vol 14 (20) ◽  
pp. 27973-28018 ◽  
Author(s):  
L. Liao ◽  
M. Dal Maso ◽  
D. Mogensen ◽  
P. Roldin ◽  
A. Rusanen ◽  
...  

Abstract. We used the MALTE-BOX model including near-explicit air chemistry and detailed aerosol dynamics to study the mechanisms of observed new particle formation events in the Jülich Plant Atmosphere Chamber. The modelled and measured H2SO4 (sulfuric acid) concentrations agreed within a factor of two. The modelled total monoterpene concentration was in line with PTR-MS observations, and we provided the distributions of individual isomers of terpenes, when no measurements were available. The aerosol dynamic results supported the hypothesis that H2SO4 is one of the critical compounds in the nucleation process. However, compared to kinetic H2SO4 nucleation, nucleation involving OH oxidation products of monoterpenes showed a better agreement with the measurements, with R2 up to 0.97 between modelled and measured total particle number concentrations. The nucleation coefficient for kinetic H2SO4 nucleation was 2.1 × 10−11 cm3 s−1, while the organic nucleation coefficient was 9.0 × 10−14 cm3 s−1. We classified the VOC oxidation products into two sub-groups including extremely low-volatility organic compounds (ELVOCs) and semi-volatile organic compounds (SVOCs). These ELVOCs and SVOCs contributed approximately equally to the particle volume production, whereas only ELVOCs made the smallest particles to grow in size. The model simulations revealed that the chamber walls constitute a major net sink of SVOCs on the first experiment day. However, the net wall SVOC uptake was gradually reduced because of SVOC desorption during the following days. Thus, in order to capture the observed temporal evolution of the particle number size distribution, the model needs to consider reversible gas-wall partitioning.


2020 ◽  
Vol 117 (41) ◽  
pp. 25344-25351 ◽  
Author(s):  
Bin Zhao ◽  
Manish Shrivastava ◽  
Neil M. Donahue ◽  
Hamish Gordon ◽  
Meredith Schervish ◽  
...  

The large concentrations of ultrafine particles consistently observed at high altitudes over the tropics represent one of the world’s largest aerosol reservoirs, which may be providing a globally important source of cloud condensation nuclei. However, the sources and chemical processes contributing to the formation of these particles remain unclear. Here we investigate new particle formation (NPF) mechanisms in the Amazon free troposphere by integrating insights from laboratory measurements, chemical transport modeling, and field measurements. To account for organic NPF, we develop a comprehensive model representation of the temperature-dependent formation chemistry and thermodynamics of extremely low volatility organic compounds as well as their roles in NPF processes. We find that pure-organic NPF driven by natural biogenic emissions dominates in the uppermost troposphere above 13 km and accounts for 65 to 83% of the column total NPF rate under relatively pristine conditions, while ternary NPF involving organics and sulfuric acid dominates between 8 and 13 km. The large organic NPF rates at high altitudes mainly result from decreased volatility of organics and increased NPF efficiency at low temperatures, somewhat counterbalanced by a reduced chemical formation rate of extremely low volatility organic compounds. These findings imply a key role of naturally occurring organic NPF in high-altitude preindustrial environments and will help better quantify anthropogenic aerosol forcing from preindustrial times to the present day.


2017 ◽  
Author(s):  
Penglin Ye ◽  
Yunliang Zhao ◽  
Wayne K. Chuang ◽  
Allen L. Robinson ◽  
Neil M. Donahue

Abstract. We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m−3, these mass yields are 2–3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an Aerosol Mass Spectrometer was around −0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.


2020 ◽  
Author(s):  
James Brean ◽  
David C. S. Beddows ◽  
Zongbo Shi ◽  
Brice Temime-Roussel ◽  
Nicolas Marchand ◽  
...  

Abstract. Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative forcing, and have significant effects on human health. New particle formation (NPF) is the process by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes significantly to particle numbers in the atmosphere, accounting for approximately 50 % of cloud condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in NE Spain. The rate of formation of new particles is seen to increase linearly with sulphuric acid concentration in a manner similar to systems studied in chamber studies involving sulphuric acid, water and dimethylamine (DMA), as well as sulphuric acid, water and the oxidation products of pinanediol. The sulphuric acid dimer : monomer ratio is significantly lower than that seen in experiments involving sulphuric acid and DMA in chambers, indicating that stabilization of sulphuric acid clusters by bases is weaker in this dataset than in chambers, and thus another mechanism, likely involving the plentiful highly oxygenated organic molecules (HOMs) is plausible. The high concentrations of HOMs arise largely from both alkylbenzene and monoterpene oxidation, with the former providing greater concentrations of HOMs due to significant local sources. The concentration of these HOMs shows a dependence on both temperature and precursor VOC concentration. New particle formation without growth past 10 nm is also observed, and on these days the highly oxygenated organic compound concentration is significantly lower than on days with growth, and thus high concentrations of low volatility oxygenated organics appear to be a necessary condition for the growth of newly formed particles in Barcelona. These results are consistent with prior observations of new particle formation in both chambers and the real atmosphere, and these results are likely representative of the urban background of many European Mediterranean cities.


2021 ◽  
Author(s):  
Luis M. F. Barreira ◽  
Arttu Ylisirniö ◽  
Iida Pullinen ◽  
Angela Buchholz ◽  
Zijun Li ◽  
...  

Abstract. Secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) constitute a significant fraction of atmospheric particulate matter and have been recognized to affect significantly the climate and air quality. Many laboratory and field experiments have studied SOA particle formation and growth in the recent years. Most of them have focused on a few monoterpenes and isoprene. However, atmospheric SOA particulate mass yields and chemical composition result from a much more complex mixture of oxidation products originating from many BVOCs, including terpenes other than isoprene and monoterpenes. Thus, a large uncertainty still remains regarding the contribution of BVOCs to SOA. In particular, organic compounds formed from sesquiterpenes have not been thoroughly investigated, and their contribution to SOA remains poorly characterized. In this study, a Filter Inlet for Gases and Aerosols (FIGAERO) combined with a high-resolution time-of-flight chemical ionization mass spectrometer (CIMS), with iodide ionization, was used for the simultaneous measurement of gas and particle phase atmospheric SOA. The aim of the study was to evaluate the relative contribution of sesquiterpene oxidation products to SOA in a spring-time hemi-boreal forest environment. Our results revealed that monoterpene and sesquiterpene oxidation products were the main contributors to SOA particles. The chemical composition of SOA particles was compared for times when either monoterpene or sesquiterpene oxidation products were dominant and possible key oxidation products for SOA particle formation were identified. Surprisingly, sesquiterpene oxidation products were the predominant fraction in the particle phase at some periods, while their gas phase concentrations remained much lower than those of monoterpene products. This can be explained by quick and effective partitioning of sesquiterpene products into the particle phase or their efficient removal by dry deposition. The SOA particle volatility determined from measured thermograms increased when the concentration of sesquiterpene oxidation products in SOA particles was higher than that of monoterpenes. Overall, this study demonstrates the important role of sesquiterpenes in atmospheric chemistry and suggests that the contribution of their products to SOA particles is being underestimated in comparison to the most studied terpenes.


2011 ◽  
Vol 11 (9) ◽  
pp. 25991-26007 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (−1.61 W m−2 in year 2000) is simulated to be greatly reduced in the future, to −0.23 W m−2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.


2012 ◽  
Vol 12 (9) ◽  
pp. 4297-4312 ◽  
Author(s):  
I. K. Ortega ◽  
T. Suni ◽  
M. Boy ◽  
T. Grönholm ◽  
H. E. Manninen ◽  
...  

Abstract. Formation of new aerosol particles by nucleation and growth is a significant source of aerosols in the atmosphere. New particle formation events usually take place during daytime, but in some locations they have been observed also at night. In the present study we have combined chamber experiments, quantum chemical calculations and aerosol dynamics models to study nocturnal new particle formation. All our approaches demonstrate, in a consistent manner, that the oxidation products of monoterpenes play an important role in nocturnal nucleation events. By varying the conditions in our chamber experiments, we were able to reproduce the very different types of nocturnal events observed earlier in the atmosphere. The exact strength, duration and shape of the events appears to be sensitive to the type and concentration of reacting monoterpenes, as well as the extent to which the monoterpenes are exposed to ozone and potentially other atmospheric oxidants.


2021 ◽  
Author(s):  
Maija Peltola ◽  
Manon Rocco ◽  
Neill Barr ◽  
Erin Dunne ◽  
James Harnwell ◽  
...  

<p>Even though oceans cover over 70% of the Earth’s surface, the ways in which oceans interact with climate are not fully known. Marine micro-organisms such as phytoplankton can play an important role in regulating climate by releasing different chemical species into air. In air these chemical species can react and form new aerosol particles. If grown to large enough sizes, aerosols can influence climate by acting as cloud condensation nuclei which influence the formation and properties of clouds. Even though a connection of marine biology and climate through aerosol formation was first proposed already over 30 years ago, the processes related to this connection are still uncertain.</p><p>To unravel how seawater properties affect aerosol formation and to identify which chemical species are responsible for aerosol formation, we built two Air-Sea-Interaction Tanks (ASIT) that isolate 1000 l of seawater and 1000 l of air directly above the water. The used seawater was collected from different locations during a ship campaign on board the R/V Tangaroa in the South West Pacific Ocean, close to Chatham Rise, east of New Zealand. Seawater from one location was kept in the tanks for 2-3 days and then changed. By using seawater collected from different locations, we could obtain water with different biological populations. To monitor the seawater, we took daily samples to determine its chemical and biological properties.</p><p>The air in the tanks was continuously flushed with particle filtered air. This way the air had on average 40 min to interact with the seawater surface before being sampled. Our air sampling was continuous and consisted of aerosol and air chemistry measurements. The instrumentation included measurements of aerosol number concentration from 1 to 500 nm and  chemical species ranging from ozone and sulphur dioxide to volatile organic compounds and chemical composition of molecular clusters.</p><p>Joining the seawater and atmospheric data together can give us an idea of what chemical species are emitted from the water into the atmosphere and whether these species can form new aerosol particles. Our preliminary results show a small number of particles in the freshly nucleated size range of 1-3 nm in the ASIT headspaces, indicating that new aerosol particles can form in the ASIT headspaces. In this presentation, we will also explore which chemical species could be responsible for aerosol formation and which plankton groups could be related to the emissions of these species. Combining these results with ambient data and modelling work can shed light on how important new particle formation from marine sources is for climate.</p><p>Acknowledgements: Sea2Cloud project is funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 771369).</p>


Sign in / Sign up

Export Citation Format

Share Document