scholarly journals Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation

2015 ◽  
Vol 112 (33) ◽  
pp. 10401-10406 ◽  
Author(s):  
Ye Sun ◽  
Chi-Hsiu Liu ◽  
John Paul SanGiovanni ◽  
Lucy P. Evans ◽  
Katherine T. Tian ◽  
...  

Pathologic ocular angiogenesis is a leading cause of blindness, influenced by both dysregulated lipid metabolism and inflammation. Retinoic-acid-receptor–related orphan receptor alpha (RORα) is a lipid-sensing nuclear receptor with diverse biologic function including regulation of lipid metabolism and inflammation; however, its role in pathologic retinal angiogenesis remains poorly understood. Using a mouse model of oxygen-induced proliferative retinopathy, we showed that RORα expression was significantly increased and genetic deficiency of RORα substantially suppressed pathologic retinal neovascularization. Loss of RORα led to decreased levels of proinflammatory cytokines and increased levels of antiinflammatory cytokines in retinopathy. RORα directly suppressed the gene transcription of suppressors of cytokine signaling 3 (SOCS3), a critical negative regulator of inflammation. Inhibition of SOCS3 abolished the antiinflammatory and vasoprotective effects of RORα deficiency in vitro and in vivo. Moreover, treatment with a RORα inverse agonist SR1001 effectively protected against pathologic neovascularization in both oxygen-induced retinopathy and another angiogenic model of very-low–density lipoprotein receptor (Vldlr)-deficient (Vldlr−/−) mice with spontaneous subretinal neovascularization, whereas a RORα agonist worsened oxygen-induced retinopathy. Our data demonstrate that RORα is a novel regulator of pathologic retinal neovascularization, and RORα inhibition may represent a new way to treat ocular neovascularization.

2019 ◽  
Author(s):  
Jiang-Hui Wang ◽  
Jinying Chen ◽  
Damien Ling ◽  
Leilei Tu ◽  
Vikrant Singh ◽  
...  

AbstractRetinal neovascularization is a severe complication of proliferative diabetic retinopathy. MicroRNAs (miRNAs) are master regulators of gene expression that play important roles in retinal neovascularization. Here, we investigated the retinal miRNA expression profile in a rat model of oxygen-induced retinopathy (OIR) through miRNA-Seq. We found that miR-143-3p, miR-126-3p, miR-150-5p and miR-145-5p were significantly down-regulated in the retina of OIR rats, and directly involved in the development of retinal neovascularization. Of these identified miRNAs, miR-143 is enriched in retina and was first reported being associated with pathological retinal angiogenesis. Our RNA-Seq data further suggested that miR-143 alleviates retinal neovascularization by mediating the inflammation/stress pathways via Fos. Moreover, the computational analysis indicated that Transforming Growth Factor-beta Activated Kinase 1 (TAK1) is involved in several key pathways associated with the dysregulated miRNAs. The pharmacological inhibition of TAK1 suppressed angiogenesis in vitro and retinal neovascularization in vivo. Our data highlight the utility of next-generation sequencing in the development of therapeutics for ocular neovascularization and further suggest that therapeutic targeting the dysregulated miRNAs or TAK1 may be a feasible adjunct therapeutic approach in patients with retinal neovascularization.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binbin Zheng ◽  
Hongbo Yang ◽  
Jianan Zhang ◽  
Xueli Wang ◽  
Hao Sun ◽  
...  

Acute lung injury (ALI) is one of the fatal symptoms of sepsis. However, there were no effective clinical treatments. TF accumulation-induced fibrin deposit formations and coagulation abnormalities in pulmonary vessels contribute to the lethality of ALI. Suppressor of cytokine signaling 3 (SOCS3) acts as an endogenous negative regulator of the TLR4/TF pathway. We hypothesized that inducing SOCS3 expression using lidocaine to suppress the TLR4/TF pathway may alleviate ALI. Hematoxylin and eosin (H&E), B-mode ultrasound, and flow cytometry were used to measure the pathological damage of mice. Gelatin zymography was used to measure matrix metalloproteinase-2/9 (MMP-2/9) activities. Western blot was used to assay the expression of protein levels. Here, we show that lidocaine could increase the survival rate of ALI mice and ameliorate the lung injury of ALI mice including reducing the edema, neutrophil infiltration, and pulmonary thrombosis formation and increasing blood flow velocity. Moreover, in vitro and in vivo, lidocaine could increase the expression of p-AMPK and SOCS3 and subsequently decrease the expression of p-ASK1, p-p38, TF, and the activity of MMP-2/9. Taken together, our study demonstrated that lidocaine could inhibit the TLR4/ASK1/TF pathway to alleviate ALI via activating AMPK-SOCS3 axis.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Thomas Vallim ◽  
Elizabeth Tarling ◽  
Tammy Kim ◽  
Mete Civelek ◽  
Angel Baldan ◽  
...  

Rationale The bile acid receptor Farnesoid-X-Receptor (FXR) regulates many aspects of lipid metabolism by various complex and not fully understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. Objective To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. Methods and Results ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma High Density Lipoprotein (HDL)-cholesterol levels. Here we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lower hepatic ABCA1 and plasma HDL levels. We identified two complementary sequences to miR-144 in the 3’ untranslated region (UTR) of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I (ApoA-I) protein, whilst overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL- cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL- cholesterol. In addition, we utilized tissue-specific FXR deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal FXR. Finally, we identified functional FXR response elements (FXREs) upstream of the miR-144 locus, consistent with direct FXR regulation. Conclusion In conclusion, we have identified a pathway involving FXR, miR-144 and ABCA1 that together regulate plasma HDL cholesterol. This pathway may be therapeutically targeted in the future in order to increase HDL levels.


2013 ◽  
Vol 19 (3) ◽  
pp. 399-406 ◽  
Author(s):  
Stéphane Helleboid ◽  
Christian Haug ◽  
Kai Lamottke ◽  
Yijun Zhou ◽  
Jianbing Wei ◽  
...  

Plants represent a tremendous structural diversity of natural compounds that bind to many different human disease targets and are potentially useful as starting points for medicinal chemistry programs. This resource is, however, still underexploited due to technical difficulties with the identification of minute quantities of active ingredients in complex mixtures of structurally diverse compounds upon raw phytomass extraction. In this work, we describe the successful identification of a novel class of potent RAR-related orphan receptor alpha (RORα or nuclear receptor NR1F1) agonists from a library of 12,000 plant extract fractions by using an optimized, robust high-throughput cell-free screening method, as well as an innovative hit compound identification procedure through further extract deconvolution and subsequent structural elucidation of the active natural compound(s). In particular, we demonstrate that neoruscogenin, a member of the steroidal sapogenin family, is a potent and high-affinity RORα agonist, as shown by its activity in RORα reporter assays and from its effect on RORα target gene expression in vitro and in vivo. Neoruscogenin represents a universal pharmacological tool for RORα research due to its specific selectivity profile versus other nuclear receptors, its excellent microsomal stability, good bioavailability, and significant peripheral exposure in mouse.


Author(s):  
Jose R. Hombrebueno ◽  
Aisling Lynch ◽  
Eimear M. Byrne ◽  
Gideon Obasanmi ◽  
Adrien Kissenpfennig ◽  
...  

Objective: Myeloid cells are critically involved in inflammation-induced angiogenesis, although their pathogenic role in the ischemic retina remains controversial. We hypothesize that myeloid cells contribute to pathogenic neovascularization in retinopathy of prematurity through STAT3 (signal transducer and activator of transcription 3) activation. Approach and Results: Using the mouse model of oxygen-induced retinopathy, we show that myeloid cells (CD45 + IsolectinB4 [IB4] + ) and particularly M2-type macrophages (CD45 + Arg1 + ), comprise a major source of STAT3 activation (pSTAT3) in the immature ischemic retina. Most of the pSTAT3-expressing myeloid cells concentrated at the hyaloid vasculature and their numbers were strongly correlated with the severity of pathogenic neovascular tuft formation. Pharmacological inhibition of STAT3 reduced the load of IB4 + cells in the hyaloid vasculature and significantly reduced the formation of pathogenic neovascular tufts during oxygen-induced retinopathy, leading to improved long-term visual outcomes (ie, increased retinal thickness and scotopic b-wave electroretinogram responses). Genetic deletion of SOCS3 (suppressor of cytokine signaling 3), an endogenous inhibitor of STAT3, in myeloid cells, enhanced pathological and physiological neovascularization in oxygen-induced retinopathy, indicating that myeloid-STAT3 signaling is crucial for retinal angiogenesis. Conclusions: Circulating myeloid cells may migrate to the immature ischemic retina through the hyaloid vasculature and contribute to retinal neovascularization via activation of STAT3. Understanding how STAT3 modulates myeloid cells for vascular repair/pathology may provide novel therapeutic options in pathogenic angiogenesis.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuanyuan Guan ◽  
Yuemei Ma ◽  
Yao Tang ◽  
Xiaolei Liu ◽  
Yan Zhao ◽  
...  

Abstract Background This study was designed to investigate the mechanism and effects of miRNA-221-5p on the T-helper 17 (Th17)/T-regulatory (Treg) ratio in asthma. Methods BALB/c mice were intranasally challenged with 100 µg OVA on 14 and 21 day. Mice were rechallenged with 2.5% OVA-PBS on 22 and 28 day. Mice were sacrificed using on day 30 under 35 mg/kg pentobarbital sodium. PBMCs were induced vitro model of asthma using 500 ng of lipopolysaccharides (LPS) for 4 h. Results The expression of miRNA-221-5p was reduced in in vivo model, compared sham group. The vitro model of asthma treated with miRNA-221-5p mimic resulted in the reduction of IL-6, IL-17, IL-21 and IL-22 levels, and induction of IL-10, IL-35 and TGF-β levels. In addition, down-regulation of miRNA-221-5p induced the protein expression of suppressor of cytokine signaling 1 (SOCS1) and receptor-related orphan receptor-gamma-t (RORγt) and suppressed that of FOXP3 in in vitro model of asthma. Over-expression of miRNA-221-5p induced the protein expression of FOXP3, and suppressed that of SOCS1 and RORγt in in vitro model of asthma. The inhibition of SOCS1 or RORγt attenuated the effects of anti-miRNA-221-5p on Th17/Treg ratio in asthma. Conclusion miRNA-221-5p may play critical roles in driving the differentiation of Th17/Treg ratio via RORγt/Foxp3 by Targeting SOCS1, reduced the function of Th17 cells by directly inhibiting RORγt/SOCS1 and promoted the function of Treg cells via Foxp3/ SOCS1 in asthma.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lijie Dong ◽  
Wenbo Li ◽  
Tingting Lin ◽  
Boshi Liu ◽  
Yaru Hong ◽  
...  

Abstract Background Abnormal neovascularization is the most common cause of blindness, and hypoxia alters tissue metabolism, function, and morphology. HIF-1α, the transcriptional activator of VEGF, has intricate mechanisms of nuclear translocation and activation, but its signal termination mechanisms remain unclear. Methods We investigated the role of polypyrimidine tract-binding protein-associated splicing factor (PSF) in cellular energy production, migration, and proliferation by targeting HIF-1α in vivo and in vitro PSF plasmids were transfected with liposome 2000 transfection reagent. Young C57/BL6J mice were kept in a hyperoxia environment, followed by indoor air, resulting in oxygen-induced retinopathy. Oxygen-induced retinopathy (OIR) animals were randomly divided into three groups: OIR group, OIR + vector group (OIR cubs treated with rAAV vector) and OIR + PSF group (OIR cubs treated with rAAV-PSF). Age-matched C57/BL6J mice were used as controls and exposed to constant normoxic conditions. The animals were executed and their pupils were subjected to subsequent experiments. The metabolic spectrum was analyzed by Seahorse XFe96 flux analyzer, and OCR and extracellular acidification rate were quantified at the same time. Results PSF ameliorated retinal neovascularization and corrected abnormal VEGF expression in mice with oxygen-induced retinopathy and reduced intra-retinal neovascularization in Vldlr − / − mice. PSF reprogrammed mitochondrial bioenergetics and inhibited the transition of endothelial cells after hypoxia, suggesting its involvement in pathological angiogenesis.Ectopic PSF expression inhibited hypoxia-induced HIF-1α activation in the nucleus by recruiting Hakai to the PSF/HIF-1α complex, causing HIF-1α inhibition. PSF knockdown increased hypoxia-stimulated HIF-1α reactions. These hypoxia-dependent processes may play a vital role in cell metabolism, migration, and proliferation. Thus, PSF is a potential treatment target in neovascularization-associated ophthalmopathy. Conclusion This is the first study showing that PSF inhibits HIF-1α via recruitment of Hakai, modulates mitochondrial oxidation and glycolysis, and downregulates VEGF expression under hypoxia. We propose a new HIF-1 α/Hakai regulatory mechanism that may play a vital role in the pathogenesis of neovascularization in ophthalmopathy. PSF-Hakai–HIF-1α signaling pathway under hypoxia condition. Schematic diagram showing that the PSF-Hakai–HIF-1α signaling pathway. Under hypoxia condition, PSF-Hakai complex regulate HIF-1α signaling, thus inhibiting downstream target gene VEGF, cell metabolism and angiogenesis eventually.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 821-821 ◽  
Author(s):  
Andrew W. Roberts ◽  
Ben A. Croker ◽  
Warren Alexander ◽  
Donald Metcalf

Abstract Studies using mice with germline or tissue-specific deletion of SOCS3 indicate that SOCS3 is a negative regulator of IL-6, LIF, Leptin and G-CSF-induced STAT3 phosphorylation. We have investigated the physiological importance of SOCS3 in blood cells by creating conditionally-targeted mice with SOCS3-deficient hematopoiesis (Immunity2004; 20:153–65). These mice develop a fatal inflammatory disease in adulthood characterized by tissue infiltration with neutrophils and macrophages, and display hyper-responsiveness to G-CSF in vitro and in vivo, with the development of pathological myeloid cell-mediated tissue damage. In hepatocytes and macrophages stimulated with IL-6, we and others (Nature Immunol2003; 4:540–5, and 4:546–60) have found that SOCS3 is not only important for modulating the intensity of signalling from cytokine receptors, but also for the maintenance of specificity of the signal. Whether these qualitative changes revealed by microarray experiments have physiological significance remains to be proven. To investigate this issue in a more plastic system, we analyzed the consequences of SOCS3-deficiency in hematopoietic progenitor cells. We hypothesised that if SOCS3 was required to maintain the specificity, as well as intensity of signals arising from cytokine receptors, then changes in differentiation as well as proliferation would be observed. To exclude confounding effects from cytokine production by mature cells, and to minimize potential selection bias within the starting populations, purified SOCS3-deficient lin- kit+ progenitor cells from healthy young mice with SOCS3-deficent hematopoiesis, were compared with both littermate control and C57BL/6 lin- kit+ progenitor cells. Proliferation was monitored in liquid and agar cultures stimulated with SCF, IL-3, GM-CSF, G-CSF and IL-6 alone, or in combination with SCF. At the completion of the experiments ( 1–7 days), proportions of neutrophil, macrophage and precursors were determined by microscopy. The number of divisions progenitors underwent was monitored by clone-mapping experiments in agar and CFSE-labelling in liquid cultures. No differences between SOCS3-deficient and wild-type (WT) cells were observed after stimulation with SCF, IL-3, GM-CSF or combinations of these, suggesting that progenitor cells of each genotype were similar in their developmental potential. However, marked differences were observed for G-CSF and IL-6. G-CSF induced a 2-3-fold increase in cellular output in both liquid and agar cultures, and the distribution of CFSE-intensity was consistent with an additional division occurring over a 4 day timespan in SOCS3-deficient cells. With IL-6 stimulation, while SOCS3-deficient progenitor cells initiated 1.7-fold more colonies, the overall cellular output was no greater than that of WT progenitors. With WT progenitors for both stimuli, the vast majority of clones were neutrophil colonies and >90% of emergent cells at 7 days were neutrophils or their precursors. In contrast, SOCS3-deficient progenitors stimulated with IL-6 generated 43% granulocyte-macrophage colonies and 13% pure macrophage colonies with >70% of emergent cells being macrophages. For G-CSF, a similar, but less pronounced shift towards macrophage development was observed. We conclude that SOCS3 is required to maintain normal cellular proliferative and differentiative responses to G-CSF and IL-6. The precise perturbations in signalling responsible for these aberrations are being defined through microarray and biochemical experiments.


Sign in / Sign up

Export Citation Format

Share Document