scholarly journals Lidocaine Alleviates Sepsis-Induced Acute Lung Injury in Mice by Suppressing Tissue Factor and Matrix Metalloproteinase-2/9

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binbin Zheng ◽  
Hongbo Yang ◽  
Jianan Zhang ◽  
Xueli Wang ◽  
Hao Sun ◽  
...  

Acute lung injury (ALI) is one of the fatal symptoms of sepsis. However, there were no effective clinical treatments. TF accumulation-induced fibrin deposit formations and coagulation abnormalities in pulmonary vessels contribute to the lethality of ALI. Suppressor of cytokine signaling 3 (SOCS3) acts as an endogenous negative regulator of the TLR4/TF pathway. We hypothesized that inducing SOCS3 expression using lidocaine to suppress the TLR4/TF pathway may alleviate ALI. Hematoxylin and eosin (H&E), B-mode ultrasound, and flow cytometry were used to measure the pathological damage of mice. Gelatin zymography was used to measure matrix metalloproteinase-2/9 (MMP-2/9) activities. Western blot was used to assay the expression of protein levels. Here, we show that lidocaine could increase the survival rate of ALI mice and ameliorate the lung injury of ALI mice including reducing the edema, neutrophil infiltration, and pulmonary thrombosis formation and increasing blood flow velocity. Moreover, in vitro and in vivo, lidocaine could increase the expression of p-AMPK and SOCS3 and subsequently decrease the expression of p-ASK1, p-p38, TF, and the activity of MMP-2/9. Taken together, our study demonstrated that lidocaine could inhibit the TLR4/ASK1/TF pathway to alleviate ALI via activating AMPK-SOCS3 axis.

Author(s):  
Lichun Wang ◽  
Eleftheria Letsiou ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
...  

Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys inhibited Rho and MLC activation after MRSA and blocked MRSA-induced NF-κB activation and release of the pro-inflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or post-treatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Post-treatment with Tys significantly reduced levels of BAL VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and pro-inflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Yang Jiao ◽  
Ti Zhang ◽  
Chengmi Zhang ◽  
Haiying Ji ◽  
Xingyu Tong ◽  
...  

Abstract Background Polymorphonuclear neutrophils (PMNs) play an important role in sepsis-related acute lung injury (ALI). Accumulating evidence suggests PMN-derived exosomes as a new subcellular entity acting as a fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-derived exosomes in sepsis-related ALI and the underlying mechanisms remains unclear. Methods Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in sepsis-related ALI, was used to stimulate PMNs from healthy C57BL/6J mice in vitro. Exosomes isolated from the supernatant were injected to C57BL/6J wild-type mice intraperitoneally (i.p.) and then examined for lung inflammation, macrophage (Mϕ) polarization and pyroptosis. In vitro co-culture system was applied where the mouse Raw264.7 macrophages or bone marrow-derived macrophages (BMDMs) were co-cultured with PMN-derived exosomes to further confirm the results of in vivo animal study and explore the potential mechanisms involved. Results Exosomes released by TNF-α-stimulated PMNs (TNF-Exo) promoted M1 macrophage activation after in vivo i.p. injection or in vitro co-culture. In addition, TNF-Exo primed macrophage for pyroptosis by upregulating NOD-like receptor 3 (NLRP3) inflammasome expression through nuclear factor κB (NF-κB) signaling pathway. Mechanistic studies demonstrated that miR-30d-5p mediated the function of TNF-Exo by targeting suppressor of cytokine signaling (SOCS-1) and sirtuin 1 (SIRT1) in macrophages. Furthermore, intravenous administration of miR-30d-5p inhibitors significantly decreased TNF-Exo or cecal ligation and puncture (CLP)-induced M1 macrophage activation and macrophage death in the lung, as well as the histological lesions. Conclusions The present study demonstrated that exosomal miR-30d-5p from PMNs contributed to sepsis-related ALI by inducing M1 macrophage polarization and priming macrophage pyroptosis through activating NF-κB signaling. These findings suggest a novel mechanism of PMN-Mϕ interaction in sepsis-related ALI, which may provide new therapeutic strategies in sepsis patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yijin Xiang ◽  
Min Cai ◽  
Xiangting Li ◽  
Xuxia Bao ◽  
Dingfang Cai

Background. As a traditional Chinese medicine prescription, Xiao-Xu-Ming decoction (XXMD) could reduce the incidence of lung infection of patients with cerebral infarction. Nonetheless, the therapeutic mechanisms of XXMD in acute lung injury (ALI) remain to be elucidated. Our study was aimed to assess the effects of XXMD protects against ALI. Methods. ALI model was induced by intraperitoneal injection of lipopolysaccharide (LPS) in vivo. In vitro, human pulmonary alveolar epithelial cells (HPAEpiC) were treated with XXMD and were followed by LPS treatment. The levels of ZO-1, CLDN4, NLRP3, and caspase 1 were detected by Western blot, and the content of IL-1 and IL-18 was determined by ELISA. Transepithelial electrical resistance was used to detect the cell permeability. The reactive oxygen species (ROS) levels within the cells were evaluated by flow cytometry. Results. Our results showed that XXMD attenuated LPS-induced oxidative stress, barrier dysfunction, and the activation of NLRP3 inflammasome in vitro, as evidenced by enhanced ROS production, TEER levels, expression of NLRP3 and caspase 1 (p20) and release of IL-1β and IL-18, and weakened cell permeability. In addition, XXMD could counteract the effects of NLRP3 overexpression on HPAEpiC and vice versa. XXMD treatment also ameliorated the degree of neutrophil infiltration, barrier dysfunction, and the activation of NLRP3 in LPS-induced ALI lung tissues in vivo. Conclusion. The findings showed that XXMD could alleviate LPS-induced ALI injury and inhibit inflammation and suppress ROS/NLRP3 signaling pathway, which were involved in these protective effects.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junli Sun ◽  
Keke Xin ◽  
Chenghui Leng ◽  
Jianlin Ge

Abstract Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Thomas Helbing ◽  
Elena Ketterer ◽  
Bianca Engert ◽  
Jennifer Heinke ◽  
Sebastian Grundmann ◽  
...  

Introduction: Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome, are associated with high morbidity and mortality in patients. During the progression of ALI, the endothelial cell barrier of the pulmonary vasculature becomes compromised, leading to pulmonary edema, a characteristic feature of ALI. It is well-established that EC barrier dysfunction is initiated by cytoskeletal remodeling, which leads to disruption of cell-cell contacts and formation of paracellular gaps, allowing penetration of protein-rich fluid and inflammatory cells. Bone morphogenetic proteins (BMPs) are important players in endothelial dysfunction and inflammation but their effects on endothelial permeability in ALI have not been investigated until now. Methods and Results: As a first approach to assess the role of BMPs in acute lung injury we analysed BMP4 and BMPER expression in an infectious (LPS) and a non-infectious (bleomycin) mouse models of acute lung injury. In both models BMP4 and BMPER protein expression levels were reduced demonstrated by western blots, suggesting that BMPs are involved in progression ALI. To assess the role of BMPs on vascular leakage, a key feature of ALI, BMP activity in mice was inhibited by i.p. administration of LDN193189, a small molecule that blocks BMP signalling. After 3 days Evans blue dye (EVB) was administered i.v. and dye extravasation into the lungs was quantified as a marker for vascular leakage. Interestingly, LDN193189 significantly increased endothelial permeability compared to control lungs, indicating that BMP signaling is involved in maintenance of endothelial barrier function. To quantify effects of BMP inhibition on endothelial barrier function in vitro, HUVECs were seeded onto transwell filters and were exposed to LDN193189. After 3 days FITC-dextrane was added and passage into the lower chamber was quantified as a marker for endothelial barrier function. Thrombin served as a positive control. As expected from our in vivo experiments inhibition of BMP signaling by LDN193189 enhanced FITC-dextrane passage. To study specific effects of BMPs on endothelial barrier function, two protagonist of the BMP family, BMP2 and BMP4, or BMP modulator BMPER were tested in the transwell assay in vitro. Interestingly BMP4 and BMPER, but not BMP2, reduced FITC-dextrane passage demonstrating that BMP4 and BMPER improved endothelial barrier function. Vice versa, specific knock down of BMP4 or BMPER increased leakage in transwell assays. Im immuncytochemistry silencing of BMPER or BMP4 induced hyperpermeability as a consequence of a pro-inflammatory endothelial phenotype characterised by reduced cell-cell contacts and increased actin stress fiber formation. Additionally, the pro-inflammatory endothelial phenotype was confirmed by real-time revealing increased expression of adhesion molecules ICAM-1 or proinflammatory cytokines such as IL-6 and IL-8 in endothelial cells after BMPER or BMP4 knock down. Confirming these in vitro results BMPER +/- mice exhibit increased extravasation of EVB into the lungs, indicating that partial loss of BMPER impairs endothelial barrier function in vitro and in vivo. Conclusion: We identify BMPER and BMP4 as local regulators of vascular permeability. Both are protective for endothelial barrier function and may open new therapeutic avenues in the treatment of acute lung injury.


Sign in / Sign up

Export Citation Format

Share Document