scholarly journals Structural and functional insights into Escherichia coli α2-macroglobulin endopeptidase snap-trap inhibition

2015 ◽  
Vol 112 (27) ◽  
pp. 8290-8295 ◽  
Author(s):  
Irene Garcia-Ferrer ◽  
Pedro Arêde ◽  
Josué Gómez-Blanco ◽  
Daniel Luque ◽  
Stephane Duquerroy ◽  
...  

The survival of commensal bacteria requires them to evade host peptidases. Gram-negative bacteria from the human gut microbiome encode a relative of the human endopeptidase inhibitor, α2-macroglobulin (α2M). Escherichia coli α2M (ECAM) is a ∼180-kDa multidomain membrane-anchored pan-peptidase inhibitor, which is cleaved by host endopeptidases in an accessible bait region. Structural studies by electron microscopy and crystallography reveal that this cleavage causes major structural rearrangement of more than half the 13-domain structure from a native to a compact induced form. It also exposes a reactive thioester bond, which covalently traps the peptidase. Subsequently, peptidase-laden ECAM is shed from the membrane and may dimerize. Trapped peptidases are still active except against very large substrates, so inhibition potentially prevents damage of large cell envelope components, but not host digestion. Mechanistically, these results document a novel monomeric “snap trap.”

1970 ◽  
Vol 1 (3) ◽  
pp. 311-318
Author(s):  
D. Friedberg ◽  
I. Friedberg ◽  
M. Shilo

Interaction of lysosomal fraction with Escherichia coli caused damage to the cell envelope of these intact cells and to the cytoplasmic membrane of E. coli spheroplasts. The damage to the cytoplasmic membrane was manifested in the release of 260-nm absorbing material and β-galactosidase from the spheroplasts, and by increased permeability of cryptic cells to O -nitrophenyl-β- d -galactopyranoside; damage to the cell wall was measured by release of alkaline phosphatase. Microscope observation showed morphological changes in the cell envelope.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alessandra M. Martorana ◽  
Elisabete C. C. M. Moura ◽  
Paola Sperandeo ◽  
Flavia Di Vincenzo ◽  
Xiaofei Liang ◽  
...  

Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.


2021 ◽  
Author(s):  
Cynthia A. Hale ◽  
Logan Persons ◽  
Piet A. J. de Boer

The Tol-Pal system of Gram-negative bacteria helps maintain integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In E. coli , the five Tol-Pal proteins (TolQ, R, A, B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB and Pal also requires the presence of TolQ and/or TolA, each of the the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN attracts both proteins in an indirect fashion, and that PBP1A, PBP1B and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can recognize division sites in a separate fashion. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI and TolAIII requires TolQ and a combination of TolB, Pal, and CpoB, respectively. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli , this machinery contains over thirty distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining integrity of the outer-membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms, and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.


Author(s):  
Jianli Wang ◽  
Wenjian Ma ◽  
Yu Fang ◽  
Hao Liang ◽  
Huiting Yang ◽  
...  

Gram-negative bacteria are intrinsically resistant to antibiotics due to the presence of the cell envelope, but mechanisms are still not fully understood. In this study, a series of mutants that lack one or more major components associated with the cell envelope were constructed from Escherichia coli K-12 W3110. WJW02 can only synthesize Kdo 2 -lipid A which lacks the core oligosaccharide portion of lipopolysaccharide. WJW04, WJW07 and WJW08 were constructed from WJW02 by deleting the gene clusters relevant to the biosynthesis of exopolysaccharide, flagella and fimbria, respectively. WJW09, WJW010 and WJW011 cells cannot synthesize exopolysaccharide, flagella and fimbria, respectively. Comparing to the wild type W3110, mutants WJW02, WJW04, WJW07 and WJW08 cells showed decreased resistance to more than 10 different antibacterial drugs, but not the mutants WJW09, WJW010 and WJW011. This indicates that the core oligosaccharide portion of lipopolysaccharide plays important roles on multiple antibiotic resistance in E. coli and the 1 st heptose in core oligosaccharide portion is critical. Furthermore, the removal of the core oligosaccharide of LPS leads to influences on cell wall morphology, cell phenotypes, porins, efflux systems, and the respond behaviors to antibiotic stimulation. The results demonstrated the important role of lipopolysaccharide on the antibiotic resistance of Gram-negative bacteria.


Author(s):  
Wei-Min Qi ◽  
Ping Qian ◽  
Jian-Yong Yu ◽  
Chi-Yu Zhang ◽  
Xiao Chen ◽  
...  

Bacillus subtilis and Escherichia coli were chosen to investigate the combined effect of high hydrostatic pressure (HHP) and Nisin on loss of viability, membrane damage and release of intracellular contents of microorganisms. The results showed that the combination of 200 IU/mL Nisin and HHP exhibited a synergistic effect over 2 log on the inactivation of B. subtilis at pressure 300 MPa. The similar synergistic effect was observed on the membrane damage and release of intracellular contents of B. subtilis. The Nisin alone had no effect against E. coli, which belongs to gram negative bacteria. However, at pressure 300 MPa, Nisin caused the membrane damage from 55% to 80%. The synergistic effect of Nisin and HHP on loss of viability, membrane damage and release of intracellular contents of E. coli were also illustrated when the HHP pressure exceeded 300 MPa as the consequence of the serious changes produced by HHP at higher pressure in the cell envelope. It allows the entry of Nisin molecules to cell membrane.


mBio ◽  
2021 ◽  
Author(s):  
Nicholas P. Greene ◽  
Vassilis Koronakis

In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA.


2015 ◽  
Vol 71 (7) ◽  
pp. 1478-1486 ◽  
Author(s):  
Cameron D. Fyfe ◽  
Rhys Grinter ◽  
Inokentijs Josts ◽  
Khedidja Mosbahi ◽  
Aleksander W. Roszak ◽  
...  

Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleavedEscherichia coliα-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintainE. coliα-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture ofEscherichia coliα-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010051
Author(s):  
Dennis J. Doorduijn ◽  
Dani A. C. Heesterbeek ◽  
Maartje Ruyken ◽  
Carla J. C. de Haas ◽  
Daphne A. C. Stapels ◽  
...  

Complement proteins can form membrane attack complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria. In this paper, polymerization of C9 was prevented without affecting binding of C9 to C5b-8, by locking the first transmembrane helix domain of C9. Using this system, we show that polymerization of C9 strongly enhanced damage to both the bacterial outer and inner membrane, resulting in more rapid killing of several Escherichia coli and Klebsiella strains in serum. By comparing binding of wildtype and ‘locked’ C9 by flow cytometry, we also show that polymerization of C9 is impaired when the amount of available C9 per C5b-8 is limited. This suggests that an excess of C9 is required to efficiently form polymeric-C9. Finally, we show that polymerization of C9 was impaired on complement-resistant E. coli strains that survive killing by MAC pores. This suggests that these bacteria can specifically block polymerization of C9. All tested complement-resistant E. coli expressed LPS O-antigen (O-Ag), compared to only one out of four complement-sensitive E. coli. By restoring O-Ag expression in an O-Ag negative strain, we show that the O-Ag impairs polymerization of C9 and results in complement-resistance. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Marcin Grabowicz ◽  
Dorothee Andres ◽  
Matthew D Lebar ◽  
Goran Malojčić ◽  
Daniel Kahne ◽  
...  

The lipopolysaccharide (LPS) forms the surface-exposed leaflet of the outer membrane (OM) of Gram-negative bacteria, an organelle that shields the underlying peptidoglycan (PG) cell wall. Both LPS and PG are essential cell envelope components that are synthesized independently and assembled by dedicated transenvelope multiprotein complexes. We have identified a point-mutation in the gene for O-antigen ligase (WaaL) in Escherichia coli that causes LPS to be modified with PG subunits, intersecting these two pathways. Synthesis of the PG-modified LPS (LPS*) requires ready access to the small PG precursor pool but does not weaken cell wall integrity, challenging models of precursor sequestration at PG assembly machinery. LPS* is efficiently transported to the cell surface without impairing OM function. Because LPS* contains the canonical vancomycin binding site, these surface-exposed molecules confer increased vancomycin-resistance by functioning as molecular decoys that titrate the antibiotic away from its intracellular target. This unexpected LPS glycosylation fuses two potent pathogen-associated molecular patterns (PAMPs).


2021 ◽  
Author(s):  
Dennis J. Doorduijn ◽  
Dani A.C. Heesterbeek ◽  
Maartje Ruyken ◽  
Carla J.C. de Haas ◽  
Daphne A.C. Stapels ◽  
...  

Complement proteins can form Membrane Attack Complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria, because a robust way to specifically prevent polymerization of C9 has been lacking. In this paper, polymerization of C9 was prevented without affecting the binding of C9 to C5b-8 by locking the first transmembrane helix domain of C9. We show that polymerization of C9 strongly enhanced bacterial cell envelope damage and killing by MAC pores for several Escherichia coli and Klebsiella strains. Moreover, we show that polymerization of C9 is impaired on complement-resistant E. coli strains that survive killing by MAC pores. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing.


Sign in / Sign up

Export Citation Format

Share Document