scholarly journals A distinct subpopulation of CD25− T-follicular regulatory cells localizes in the germinal centers

2017 ◽  
Vol 114 (31) ◽  
pp. E6400-E6409 ◽  
Author(s):  
James Badger Wing ◽  
Yohko Kitagawa ◽  
Michela Locci ◽  
Hannah Hume ◽  
Christopher Tay ◽  
...  

T-follicular helper (Tfh) cells differentiate through a multistep process, culminating in germinal center (GC) localized GC-Tfh cells that provide support to GC-B cells. T-follicular regulatory (Tfr) cells have critical roles in the control of Tfh cells and GC formation. Although Tfh-cell differentiation is inhibited by IL-2, regulatory T (Treg) cell differentiation and survival depend on it. Here, we describe a CD25− subpopulation within both murine and human PD1+CXCR5+Foxp3+ Tfr cells. It is preferentially located in the GC and can be clearly differentiated from CD25+ non–GC-Tfr, Tfh, and effector Treg (eTreg) cells by the expression of a wide range of molecules. In comparison to CD25+ Tfr and eTreg cells, CD25− Tfr cells partially down-regulate IL-2–dependent canonical Treg features, but retain suppressive function, while simultaneously up-regulating genes associated with Tfh and GC-Tfh cells. We suggest that, similar to Tfh cells, Tfr cells follow a differentiation pathway generating a mature GC-localized subpopulation, CD25− Tfr cells.

2019 ◽  
Author(s):  
Gretchen Harms Pritchard ◽  
Akshay T. Krishnamurty ◽  
Jason Netland ◽  
E. Nicole Arroyo ◽  
Kennidy K. Takehara ◽  
...  

SummaryHumoral immunity depends upon the development of long-lived, antibody-secreting plasma cells and rapidly responsive memory B cells (MBCs). The differentiation of high affinity, class-switched MBCs after immunization is critically dependent upon BCL6 expression in germinal center (GC) B cells and CD4+ T follicular helper (Tfh) cells. It is less well understood how more recently described MBC subsets are generated, including the CD73+CD80+ IgM+ MBCs that initially form antibody-secreting effector cells in response to a secondary Plasmodium infection. Herein, we interrogated how BCL6 expression in both B and CD4+ T cells influenced the formation of heterogeneous Plasmodium-specific MBC populations. All Plasmodium-specific CD73+CD80+ MBCs required BCL6 expression for their formation, suggesting germinal center dependence. Further dissection of the CD4+ T and B cell interactions however revealed that somatically hypermutated CD73+CD80+ IgM+ MBCs can form not only in the absence of germinal centers, but also in the absence of CXCR5+ CD4+ Tfh cells.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 343.2-343
Author(s):  
H. Hao ◽  
S. Nakayamada ◽  
Y. Kaoru ◽  
N. Ohkubo ◽  
S. Iwata ◽  
...  

Background:Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized by immune-system aberrations. Among several types of immune cells, T follicular helper (Tfh) cells promote autoantibody production, whereas T follicular regulatory (Tfr) cells suppress Tfh-mediated antibody responses.(1)Objectives:To identify the characteristics of Tfr cells and to elucidate the mechanisms of conversion of Tfh cells to Tfr cells, we probed the phenotype of T helper cells in patients with SLE and underlying epigenetic modifications by cytokine-induced signal transducer and activators of transcription (STAT) family factors.Methods:Peripheral blood mononuclear cells from SLE patients (n=44) and healthy donors (HD; n=26) were analyzed by flow cytometry. Memory Tfh cells were sorted and cultured under stimulation with T cell receptor and various cytokines. Expression of characteristic markers and phosphorylation of STATs (p-STATs) were analyzed by flow cytometry and quantitation PCR. Histone modifications were evaluated by chromatin immunoprecipitation.Results:The proportion of CXCR5+FoxP3+Tfr cells in CD4+T cells tended to increase (2.1% vs 1.7%, p=0.17); however, that of CD4+CD45RA-FoxP3hiactivated Tfr cells in Tfr cells was decreased (4.8% vs 7.1%, p<0.05), while CD4+CD45RA-FoxP3lownon-suppressive Tfr cells was increased (50.1% vs 38.2%, p<0.01) in SLE compared to HD. The percentage of PD-1hiactivated Tfh cells was significantly higher in SLE compared to HD (15.7% vs 5.9%, p<0.01). Furthermore, active patients had a higher ratio of activated Tfh/Tfr cells compared to inactive patients. In vitro study showed that IL-2, but not other cytokines such as TGF-β1, IL-12, IL-27, and IL-35, induced the conversion of memory Tfh cells to functional Tfr cells characterized by CXCR5+Bcl6+Foxp3hipSTAT3+pSTAT5+cells. The loci ofFOXP3at STAT binding sites were marked by bivalent histone modifications. After IL-2 stimulation, STAT5 directly bound on FOXP3 gene loci accompanied by suppressing H3K27me3. Finally, we found that serum level of IL-2 was decreased in SLE and that stimulation with IL-2 suppressed the generation of CD38+CD27+B cells by ex vivo coculture assay using Tfh cells and B cells isolated from human blood.Conclusion:Our findings indicated that the regulatory function of Tfr cells is impaired due to the low ability of IL-2 production and that IL-2 restores the function of Tfr cells through conversion of Tfh cells to Tfr cells in SLE. Thus, the reinstatement of the balance between Tfh and Tfr cells will provide important therapeutic approaches for SLE.References:[1]Deng J, Wei Y, Fonseca VR, et al. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol. 2019; 15 (8): 475-90.Disclosure of Interests: :He Hao: None declared, Shingo Nakayamada Grant/research support from: Mitsubishi-Tanabe, Takeda, Novartis and MSD, Speakers bureau: Bristol-Myers, Sanofi, Abbvie, Eisai, Eli Lilly, Chugai, Asahi-kasei and Pfizer, Yamagata Kaoru: None declared, Naoaki Ohkubo: None declared, Shigeru Iwata: None declared, Yoshiya Tanaka Grant/research support from: Asahi-kasei, Astellas, Mitsubishi-Tanabe, Chugai, Takeda, Sanofi, Bristol-Myers, UCB, Daiichi-Sankyo, Eisai, Pfizer, and Ono, Consultant of: Abbvie, Astellas, Bristol-Myers Squibb, Eli Lilly, Pfizer, Speakers bureau: Daiichi-Sankyo, Astellas, Chugai, Eli Lilly, Pfizer, AbbVie, YL Biologics, Bristol-Myers, Takeda, Mitsubishi-Tanabe, Novartis, Eisai, Janssen, Sanofi, UCB, and Teijin


2017 ◽  
Vol 214 (11) ◽  
pp. 3435-3448 ◽  
Author(s):  
Irina Zaretsky ◽  
Ofir Atrakchi ◽  
Roei D. Mazor ◽  
Liat Stoler-Barak ◽  
Adi Biram ◽  
...  

The germinal center (GC) reaction begins with a diverse and expanded group of B cell clones bearing a wide range of antibody affinities. During GC colonization, B cells engage in long-lasting interactions with T follicular helper (Tfh) cells, a process that depends on antigen uptake and antigen presentation to the Tfh cells. How long-lasting T–B interactions and B cell clonal expansion are regulated by antigen presentation remains unclear. Here, we use in vivo B cell competition models and intravital imaging to examine the adhesive mechanisms governing B cell selection for GC colonization. We find that intercellular adhesion molecule 1 (ICAM-1) and ICAM-2 on B cells are essential for long-lasting cognate Tfh–B cell interactions and efficient selection of low-affinity B cell clones for proliferative clonal expansion. Thus, B cell ICAMs promote efficient antibody immune response by enhancement of T cell help to cognate B cells.


2022 ◽  
Author(s):  
Kara A. O’Neal ◽  
Leah E. Latham ◽  
Enatha Ntirandekura ◽  
Camille L. Foscue ◽  
Jason S. Stumhofer

Inducible T cell co-stimulator (ICOS) plays a key role in the differentiation and maintenance of follicular helper T (Tfh) cells and thus germinal center (GC) formation. Previously, our lab showed in a Plasmodium chabaudi infection model that Icos -/- mice were significantly impaired in their ability to form GCs despite a persistent infection and thus a continued antigen (Ag) load. Here, we show that resolution of a primary infection with P. yoelii , was delayed in Icos -/- mice. This phenotype was associated with a reduction in the accumulation of Tfh-like and GC Tfh cells and an early deficiency in Ag-specific antibody (Ab) production. However, Icos -/- mice could form GCs, though they were less frequent in number than in wild-type (WT) mice. Nonetheless, the Ag-specific Abs from Icos -/- mice lacked signs of affinity maturation, suggesting functional defects associated with these GCs. Eventually, these GC structures dissipated more rapidly in Icos -/- mice than in WT mice. Moreover, the ability of Icos -/- mice to form these GC structures is not reliant on the high Ag load associated with P. yoelii infections, as GC formation was preserved in Icos -/- mice treated with atovaquone. Finally, mice were unable to form secondary GCs in the absence of ICOS after re-challenge. Overall, these data demonstrate the necessity of ICOS in the maintenance of Tfh cells, the formation and maintenance of sufficient numbers of functioning GCs, and the ability to generate new GC structures after re-infection with P. yoelii .


2021 ◽  
Vol 12 ◽  
Author(s):  
Shimeng Zhang ◽  
Lei Li ◽  
Danli Xie ◽  
Srija Reddy ◽  
John W. Sleasman ◽  
...  

T Follicular helper (Tfh) cells promote germinal center (GC) B cell responses to develop effective humoral immunity against pathogens. However, dysregulated Tfh cells can also trigger autoantibody production and the development of autoimmune diseases. We report here that Tsc1, a regulator for mTOR signaling, plays differential roles in Tfh cell/GC B cell responses in the steady state and in immune responses to antigen immunization. In the steady state, Tsc1 in T cells intrinsically suppresses spontaneous GC-Tfh cell differentiation and subsequent GC-B cell formation and autoantibody production. In immune responses to antigen immunization, Tsc1 in T cells is required for efficient GC-Tfh cell expansion, GC-B cell induction, and antigen-specific antibody responses, at least in part via promoting GC-Tfh cell mitochondrial integrity and survival. Interestingly, in mixed bone marrow chimeric mice reconstituted with both wild-type and T cell-specific Tsc1-deficient bone marrow cells, Tsc1 deficiency leads to enhanced GC-Tfh cell differentiation of wild-type CD4 T cells and increased accumulation of wild-type T regulatory cells and T follicular regulatory cells. Such bystander GC-Tfh cell differentiation suggests a potential mechanism that could trigger self-reactive GC-Tfh cell/GC responses and autoimmunity via neighboring GC-Tfh cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Long-Shan Ji ◽  
Xue-Hua Sun ◽  
Xin Zhang ◽  
Zhen-Hua Zhou ◽  
Zhuo Yu ◽  
...  

Helping B cells and antibody responses is a major function of CD4+T helper cells. Follicular helper T (Tfh) cells are identified as a subset of CD4+T helper cells, which is specialized in helping B cells in the germinal center reaction. Tfh cells express high levels of CXCR5, PD-1, IL-21, and other characteristic markers. Accumulating evidence has demonstrated that the dysregulation of Tfh cells is involved in infectious, inflammatory, and autoimmune diseases, including lymphocytic choriomeningitis virus (LCMV) infection, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), IgG4-related disease (IgG4-RD), Sjögren syndrome (SS), and type 1 diabetes (T1D). Activation of subset-specific transcription factors is the essential step for Tfh cell differentiation. The differentiation of Tfh cells is regulated by a complicated network of transcription factors, including positive factors (Bcl6, ATF-3, Batf, IRF4, c-Maf, and so on) and negative factors (Blimp-1, STAT5, IRF8, Bach2, and so on). The current knowledge underlying the molecular mechanisms of Tfh cell differentiation at the transcriptional level is summarized in this paper, which will provide many perspectives to explore the pathogenesis and treatment of the relevant immune diseases.


EMBO Reports ◽  
2015 ◽  
Vol 16 (6) ◽  
pp. 753-768 ◽  
Author(s):  
Nicole C Walsh ◽  
Lynnea R Waters ◽  
Jessica A Fowler ◽  
Mark Lin ◽  
Cameron R Cunningham ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Merino Tejero ◽  
Danial Lashgari ◽  
Rodrigo García-Valiente ◽  
Jiaojiao He ◽  
Philippe A. Robert ◽  
...  

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.


2021 ◽  
Vol 10 ◽  
Author(s):  
Rosario Munguía-Fuentes ◽  
Raúl Antonio Maqueda-Alfaro ◽  
Rommel Chacón-Salinas ◽  
Leopoldo Flores-Romo ◽  
Juan Carlos Yam-Puc

Gaining knowledge of the neoplastic side of the three main cells—B cells, Follicular Helper T (Tfh) cells, and follicular dendritic cells (FDCs) —involved in the germinal center (GC) reaction can shed light toward further understanding the microuniverse that is the GC, opening the possibility of better treatments. This paper gives a review of the more complex underlying mechanisms involved in the malignant transformations that take place in the GC. Whilst our understanding of the biology of the GC-related B cell lymphomas has increased—this is not reviewed in detail here—the dark side involving neoplasms of Tfh cells and FDCs are poorly studied, in great part, due to their low incidence. The aggressive behavior of Tfh lymphomas and the metastatic potential of FDCs sarcomas make them clinically relevant, merit further attention and are the main focus of this review. Tfh cells and FDCs malignancies can often be misdiagnosed. The better understanding of these entities linked to their molecular and genetic characterization will lead to prediction of high-risk patients, better diagnosis, prognosis, and treatments based on molecular profiles.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Rob J. De Boer ◽  
Alan S. Perelson

ABSTRACT Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than other lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. IMPORTANCE Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. We suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.


Sign in / Sign up

Export Citation Format

Share Document