scholarly journals Coupled Antigen and BLIMP1 Asymmetric Division With a Large Segregation Between Daughter Cells Recapitulates the Temporal Transition From Memory B Cells to Plasma Cells and a DZ-to-LZ Ratio in the Germinal Center

2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Merino Tejero ◽  
Danial Lashgari ◽  
Rodrigo García-Valiente ◽  
Jiaojiao He ◽  
Philippe A. Robert ◽  
...  

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.

Blood ◽  
2010 ◽  
Vol 115 (9) ◽  
pp. 1718-1726 ◽  
Author(s):  
Ghyath Maarof ◽  
Laurence Bouchet-Delbos ◽  
Hélène Gary-Gouy ◽  
Ingrid Durand-Gasselin ◽  
Roman Krzysiek ◽  
...  

Abstract Complex molecular mechanisms control B-cell fate to become a memory or a plasma cell. Interleukin-24 (IL-24) is a class II family cytokine of poorly understood immune function that regulates the cell cycle. We previously observed that IL-24 is strongly expressed in leukemic memory-type B cells. Here we show that IL-24 is also expressed in human follicular B cells; it is more abundant in CD27+ memory B cells and CD5-expressing B cells, whereas it is low to undetectable in centroblasts and plasma cells. Addition of IL-24 to B cells, cultured in conditions shown to promote plasma cell differentiation, strongly inhibited plasma cell generation and immunoglobulin G (IgG) production. By contrast, IL-24 siRNA increased terminal differentiation of B cells into plasma cells. IL-24 is optimally induced by BCR triggering and CD40 engagement; IL-24 increased CD40-induced B-cell proliferation and modulated the transcription of key factors involved in plasma cell differentiation. It also inhibited activation-induced tyrosine phosphorylation of signal transducer and activator of transcription-3 (STAT-3), and inhibited the transcription of IL-10. Taken together, our results indicate that IL-24 is a novel cytokine involved in T-dependent antigen (Ag)–driven B-cell differentiation and suggest its physiologic role in favoring germinal center B-cell maturation in memory B cells at the expense of plasma cells.


Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5907-5917 ◽  
Author(s):  
Katerina Vrzalikova ◽  
Martina Vockerodt ◽  
Sarah Leonard ◽  
Andrew Bell ◽  
Wenbin Wei ◽  
...  

AbstractAn important pathogenic event in Epstein-Barr virus (EBV)-associated lymphomas is the suppression of virus replication, which would otherwise lead to cell death. Because virus replication in B cells is intimately linked to their differentiation toward plasma cells, we asked whether the physiologic signals that drive normal B-cell differentiation are absent in EBV-transformed cells. We focused on BLIMP1α, a transcription factor that is required for plasma cell differentiation and that is inactivated in diffuse large B-cell lymphomas. We show that BLIMP1α expression is down-regulated after EBV infection of primary germinal center B cells and that the EBV oncogene, latent membrane protein-1 (LMP-1), is alone capable of inducing this down-regulation in these cells. Furthermore, the down-regulation of BLIMP1α by LMP-1 was accompanied by a partial disruption of the BLIMP1α transcriptional program, including the aberrant induction of MYC, the repression of which is required for terminal differentiation. Finally, we show that the ectopic expression of BLIMP1α in EBV-transformed cells can induce the viral lytic cycle. Our results suggest that LMP-1 expression in progenitor germinal center B cells could contribute to the pathogenesis of EBV-associated lymphomas by down-regulating BLIMP1α, in turn preventing plasma cell differentiation and induction of the viral lytic cycle.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


2021 ◽  
Vol 11 ◽  
Author(s):  
Elena Merino Tejero ◽  
Danial Lashgari ◽  
Rodrigo García-Valiente ◽  
Xuefeng Gao ◽  
Fabien Crauste ◽  
...  

Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.


Author(s):  
Shan Zeng ◽  
Qian Qiu ◽  
Yi Zhou ◽  
Youjun Xiao ◽  
Jingnan Wang ◽  
...  

Background and purpose: To investigate the role of bromodomain-containing protein 4 (Brd4) in regulating B cell differentiation and its therapeutic potential for B cell-mediated autoimmune diseases such as systemic lupus erythematosus (SLE). Experimental Approach: Human and murine B cells were purified and cultured with different stimuli. B cell surface markers, proliferation and apoptosis were estimated by flow cytometry. Gene expression was measured by quantitative real-time PCR. Brd4 binding sites were analysed by the luciferase reporter assay and the chromatin immunoprecipitation (ChIP) assay. PFI-1 or JQ1 was used to inhibit Brd4. Mice with B cell-specific deletion of the Brd4 gene (Brd4flox/floxCD19-Cre+/-) and MRL/lpr mice were used to perform the in vivo experiments. Key Results: Brd4 inhibition suppressed plasmablast-mediated plasma cell differentiation but did not influence proliferation or apoptosis in healthy human and murine CD19+ B cells. PFI-1 treatment reduced the secretion of IgG and IgM in the supernatants of costimulation-induced B cells. Mechanistically, Brd4 regulates the terminal differentiation of B cells into plasma cells by targeting BLIMP1 by directly binding and activating the endogenous BLIMP1 promoter. Interestingly, PFI-1 treatment decreased the percentages of plasmablasts and plasma cells from patients with SLE. PFI-1 administration reduced the percentages of plasma cells, hypergammaglobulinemia and attenuated nephritis in MRL/lpr mice. Pristane-injected Brd4flox/floxCD19-Cre+/- mice exhibited improved nephritis and reduced percentages of plasma cells. Conclusions and Implications: Brd4 is an essential factor in regulating plasma cell differentiation. Brd4 inhibition may be a potential new strategy for the treatment of B cell-associated autoimmune disorders, including SLE.


2020 ◽  
Vol 4 (12) ◽  
pp. 2821-2836
Author(s):  
Jennifer Shrimpton ◽  
Matthew A. Care ◽  
Jonathan Carmichael ◽  
Kieran Walker ◽  
Paul Evans ◽  
...  

Abstract Waldenström macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli. In this study, we assess WM B-cell differentiation using an established in vitro model system. Using T-cell–dependent conditions, we obtained CD138+ plasma cells from WM samples with a frequency similar to experiments performed with B cells from normal donors. Unexpectedly, a proportion of the WM B cells failed to upregulate CD38, a surface marker that is normally associated with plasmablast transition and maintained as the cells proceed with differentiation. In normal B cells, concomitant Toll-like receptor 7 (TLR7) activation and B-cell receptor cross-linking drives proliferation, followed by differentiation at similar efficiency to CD40-mediated stimulation. In contrast, we found that, upon stimulation with TLR7 agonist R848, WM B cells failed to execute the appropriate changes in transcriptional regulators, identifying an uncoupling of TLR signaling from the plasma cell differentiation program. Provision of CD40L was sufficient to overcome this defect. Thus, the limited clonotypic WM plasma cell differentiation observed in vivo may result from a strict requirement for integrated activation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 216-216 ◽  
Author(s):  
Nicole Heise ◽  
Nilushi De Silva ◽  
Amanda Carette ◽  
Giorgia Simonetti ◽  
Govind Bhagat ◽  
...  

Abstract Abstract 216 The majority of B cell-derived neoplasms, including Hodgkin and Non-Hodgkin lymphoma and multiple myeloma (MM), arise from antigen-specific B cells that have undergone the germinal center (GC) reaction of T-dependent immune responses. Recent work has demonstrated that GC-derived tumors frequently harbor genetic mutations in nuclear factor-κB (NF-κB) signaling pathway components, resulting in the constitutive activation of NF-κB signaling, thus identifying NF-κB as a critical player in GC-lymphomagenesis. Moreover, there is evidence for a preferential activation of particular NF-κB transcription factor subunits in tumor subtypes. Despite extensive knowledge about the biology of NF-κB, its potential function in the physiology and development of GC B cells, the presumptive tumor precursor cells, is largely unresolved. The NF-κB signaling cascade comprises 5 different subunits, which occur as homo- and heterodimers and can be activated via two different routes, the canonical (classical) and the alternative (non-canonical/classical) NF-κB pathways. RELA, c-REL and p105/p50 represent the subunits of the canonical, while RELB and p100/p52 comprise those of the alternative pathway. It is known that there is no active NF-κB signaling in tonsillar GC centroblasts. Conversely, NF-κB activation was shown to occur in a subset of GC centrocytes. In this study, we demonstrate that each of the 5 NF-κB subunits exhibit nuclear translocation in centrocytes. Surprisingly, we observed that centrocytes expressing the plasma cell master regulator BLIMP1 showed strong immunofluorescence (IF) staining for the alternative NF-κB subunit p100/p52 and weak expression of the canonical subunits p105/p50 and c-REL compared to surrounding lymphocytes. Plasma cells localized in the tonsillar subepithelium showed the same pattern of expression. This observed differential expression of alternative vs. canonical NF-κB subunits in plasma cells and B cells, respectively, is supported by gene expression profiling data of human B cell subpopulations. Moreover, we observed that a mouse lymphoma cell line (M12) shows activation of the alternative NF-κB pathway upon induction of plasma cell differentiation. Also, Western and IF analysis of MM vs. diffuse large B cell lymphoma (DLBCL) cell lines revealed high protein levels and nuclear translocation of both p52 and RELB and low levels and cytosolic localization of c-REL in MM cell lines, while the opposite pattern was observed in the analyzed DLBCL lines. In summary, the elevated protein expression and presumed activity of the alternative over the canonical NF-κB pathway in plasma cells and their precursors suggests that activation of the alternative NF-κB pathway in centrocytes may contribute to plasma cell development and/or physiology. To elucidate the in vivo function of individual NF-κB transcription factor subunits, we started by determining the extent to which deletion of c-REL specifically in GC B cells affects the biology and differentiation of GC and post-GC B cells. We generated and then crossed a conditional loxP-flanked rel (c-REL) allele to mice that express the Cre-recombinase in GC B cells instructed to undergo class switch recombination (Cγ1-Cre mice). Following immunization with a T-dependent antigen, PNA+CD95+ GC B cell numbers were markedly reduced in immunized relfl/flCγ1-Cre mice compared to rel+/+Cγ1-Cre control mice. In addition, immunohistochemical analysis of spleen sections for BCL6 and IgG1 showed significantly smaller GCs, and a strong reduction in the numbers of GC-derived IgG1-secreting plasma cells, in relfl/flCγ1-Cre mice compared to controls. Consistent with these findings, we observed that relfl/flCγ1-Cre mice showed dramatically reduced numbers of nitrophenyl (NP) hapten-specific cells 14 days after immunization with NP-KLH compared to the control mice. Taken together, these findings suggest that c-REL may be required for the maintenance of GC B cells or for their selection into the post-GC compartment. Of note, the results demonstrate that deletion of a single NF-κB subunit in GC B cells can have drastic effects, suggesting a lack of general redundancy of the canonical subunits during the GC reaction. These findings imply that c-REL activation needs to be tightly controlled during GC B cell development, and raise the possibility that other NF-κB subunits may also exert unique functions in GC B cell differentiation. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 220 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Flavia Fonseca Bloise ◽  
Felipe Leite de Oliveira ◽  
Alberto Félix Nobrega ◽  
Rita Vasconcellos ◽  
Aline Cordeiro ◽  
...  

The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3′-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19+B-cells. T3administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220+cells correlating with an increased percentage of CD138+plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detectedex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3stimulate plasmacytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.


2014 ◽  
Vol 211 (11) ◽  
pp. 2169-2181 ◽  
Author(s):  
Sebastian Carotta ◽  
Simon N. Willis ◽  
Jhagvaral Hasbold ◽  
Michael Inouye ◽  
Swee Heng Milon Pang ◽  
...  

Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell–promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1–IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation.


2021 ◽  
Author(s):  
Ashley N. Barlev ◽  
Susan Malkiel ◽  
Annemarie L. Dorjée ◽  
Jolien Suurmond ◽  
Betty Diamond

AbstractFcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcγRIIB expression on B cell activation and plasma cell differentiation.Loss of FcγRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) and IgG3+ B cells had the highest expression of FcγRIIB and the increase in serum IgG3 was linked to increased MZ B cell signaling and activation in the absence of FcγRIIB. Likewise, human circulating MZ-like B cells had the highest expression of FcγRIIB, and their activation was most strongly inhibited by engaging FcγRIIB. Finally, marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses with both T-dependent and T-independent antigens in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice.Thus, we present a model where high FcγRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document