scholarly journals Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird

2017 ◽  
Vol 114 (43) ◽  
pp. 11470-11475 ◽  
Author(s):  
Min Wang ◽  
Zhiheng Li ◽  
Zhonghe Zhou

Bird skeletons exhibit remarkable modifications that allow for flight. The most distinguishable features are the fusion of the bones in the hand, feet, and pelvis into composite rigid and bony structures. However, the historical origins of these avian bone fusions remain elusive because of the rarity of transitional fossils and developmental studies on modern birds. Here, we describe an Early Cretaceous bird (120 Mya) that has fully fused alular-major metacarpals and pelvis. We discuss the manus and pelvis fusions across Paravian phylogeny and demonstrate that these features evolved independently across nonavian theropods, Enantiornithes, and Ornithuromorpha. The fusions of these bones are rare in known nonavian theropods and Early Cretaceous birds but are well established among Late Cretaceous and modern birds, revealing a complicated evolution pattern unrecognized previously. We posit that the developments of bone fusion were polymorphic close to the origin of birds, resulting in the varying degrees of fusion in Paraves. However, that development polymorphism appears to be fundamentally restricted along the line to modern birds by the Late Cretaceous, where all birds have a completely fused manus and pelvis. Such changes likely correspond to a refinement of flight capability. Alternatively, the degree of bone fusion in this primitive bird may have been related to modifications in genes or developmental paths. Future studies and fossil discoveries are required to clarify these hypotheses and pinpoint the developmental pathways involving the bone fusions in early avian evolution through to their modern pattern.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander W. A. Kellner ◽  
Michael W. Caldwell ◽  
Borja Holgado ◽  
Fabio M. Dalla Vecchia ◽  
Roy Nohra ◽  
...  

AbstractDespite being known from every continent, the geological record of pterosaurs, the first group of vertebrates to develop powered flight, is very uneven, with only a few deposits accounting for the vast majority of specimens and almost half of the taxonomic diversity. Among the regions that stand out for the greatest gaps of knowledge regarding these flying reptiles, is the Afro-Arabian continent, which has yielded only a small number of very fragmentary and incomplete materials. Here we fill part of that gap and report on the most complete pterosaur recovered from this continent, more specifically from the Late Cretaceous (~95 mya) Hjoûla Lagerstätte of Lebanon. This deposit is known since the Middle Ages for the exquisitely preserved fishes and invertebrates, but not for tetrapods, which are exceedingly rare. Mimodactylus libanensis gen. et sp. nov. differs from the other Afro-Arabian pterosaur species named to date and is closely related to the Chinese species Haopterus gracilis, forming a new clade of derived toothed pterosaurs. Mimodactylidae clade nov. groups species that are related to Istiodactylidae, jointly designated as Istiodactyliformes (clade nov.). Istiodactyliforms were previously documented only in Early Cretaceous sites from Europe and Asia, with Mimodactylus libanensis the first record in Gondwana.


Palaeobotany ◽  
2016 ◽  
Vol 7 ◽  
pp. 80-95 ◽  
Author(s):  
L. B. Golovneva

The Ul’ya flora comes from the Coniacian volcanogenic deposits of the Amka Formation (the Ul'ya depression, southern part of the Okhotsk-Chukotka volcanogenic belt). Ginkgoaleans are diverse in this flora and represented by three genera: Ginkgo, Sphenobaiera and Baiera. All specimens have no cuticle and were assigned to morphotaxa. Genus Ginkgo includes two species: G. ex gr. adiantoides (Ung.) Heer with entire leaves and G. ex gr. sibirica Heer with dissected leaves. Genus Sphenobaiera also consists of two species: S. ex gr. longifolia (Pom.) Florin with 4–8 leaf lobes and S. ex gr. biloba Prynada with two leaf lobes. Genus Baiera is represented by new species B. lebedevii Golovn., sp. nov.Leaves of this species are 25–30 cm long and 13–16 cm wide, narrowly wedge-shaped with flat slender petiole, dichotomously dissected 4–5 times into linear segments 3–6 mm wide with 6–12 veins. The length of ultimate segments is equal to about a half of leaf length. Leaves attached spirally to ovoid short shoots about 2 cm long. Among the Late Cretaceous floras similar diversity of ginkgoaleans was recorded only in the Turonian-Coniacian Arman flora from middle part of the Okhotsk-Chukotka volcanogenic belt (Herman et al., 2016). Four species of ginkgoaleans from the Ul’ya flora (except G. ex gr. adiantoides) are considered as the Early Cretaceous relicts.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 116
Author(s):  
Yue Sun ◽  
Barry P. Kohn ◽  
Samuel C. Boone ◽  
Dongsheng Wang ◽  
Kaixing Wang

The Zhuguangshan complex hosts the main uranium production area in South China. We report (U-Th)/He and fission track thermochronological data from Triassic–Jurassic mineralized and non-mineralized granites and overlying Cambrian and Cretaceous sandstone units from the Lujing uranium ore field (LUOF) to constrain the upper crustal tectono-thermal evolution of the central Zhuguangshan complex. Two Cambrian sandstones yield reproducible zircon (U-Th)/He (ZHe) ages of 133–106 Ma and low effective uranium (eU) content (270–776 ppm). One Upper Cretaceous sandstone and seven Mesozoic granites are characterized by significant variability in ZHe ages (154–83 Ma and 167–36 Ma, respectively), which show a negative relationship with eU content (244–1098 ppm and 402–4615 ppm), suggesting that the observed age dispersion can be attributed to the effect of radiation damage accumulation on 4He diffusion. Correspondence between ZHe ages from sandstones and granites indicates that surrounding sedimentary rocks and igneous intrusions supplied sediment to the Cretaceous–Paleogene Fengzhou Basin lying adjacent to the LUOF. The concordance of apatite fission track (AFT) central ages (61–54 Ma) and unimodal distributions of confined track lengths of five samples from different rock units suggest that both sandstone and granite samples experienced a similar cooling history throughout the entire apatite partial annealing zone (~110–60 °C). Apatite (U-Th-Sm)/He (AHe) ages from six non-mineralized samples range from 67 to 19 Ma, with no apparent correlation to eU content (2–78 ppm). Thermal history modeling of data suggests that the LUOF experienced relatively rapid Early Cretaceous cooling. In most samples, this was followed by the latest Early Cretaceous–Late Cretaceous reheating and subsequent latest Late Cretaceous–Recent cooling to surface temperatures. This history is considered as a response to the transmission of far-field stresses, involving alternating periods of regional compression and extension, related to paleo-Pacific plate subduction and subsequent rollback followed by Late Paleogene–Recent India–Asia collision and associated uplift and eastward extrusion of the Tibetan Plateau. Thermal history models are consistent with the Fengzhou Basin having been significantly more extensive in the Late Cretaceous–Early Paleogene, covering much of the LUOF. Uranium ore bodies which may have formed prior to the Late Cretaceous may have been eroded by as much as ~1.2 to 4.8 km during the latest Late Cretaceous–Recent denudation.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 354
Author(s):  
Davide Badano ◽  
Qingqing Zhang ◽  
Michela Fratini ◽  
Laura Maugeri ◽  
Inna Bukreeva ◽  
...  

Lebambromyia sacculifera sp. nov. is described from Late Cretaceous amber from Myanmar, integrating traditional observation techniques and X-ray phase contrast microtomography. Lebambromyia sacculifera is the second species of Lebambromyia after L. acrai Grimaldi and Cumming, described from Lebanese amber (Early Cretaceous), and the first record of this taxon from Myanmar amber, considerably extending the temporal and geographic range of this genus. The new specimen bears a previously undetected set of phylogenetically relevant characters such as a postpedicel sacculus and a prominent clypeus, which are shared with Ironomyiidae and Eumuscomorpha. Our cladistic analyses confirmed that Lebambromyia represented a distinct monophyletic lineage related to Platypezidae and Ironomyiidae, though its affinities are strongly influenced by the interpretation and coding of the enigmatic set of features characterizing these fossil flies.


2021 ◽  
pp. 004912412098618
Author(s):  
Tim de Leeuw ◽  
Steffen Keijl

Although multiple organizational-level databases are frequently combined into one data set, there is no overview of the matching methods (MMs) that are utilized because the vast majority of studies does not report how this was done. Furthermore, it is unclear what the differences are between the utilized methods, and it is unclear whether research findings might be influenced by the utilized method. This article describes four commonly used methods for matching databases and potential issues. An empirical comparison of those methods used to combine regularly used organizational-level databases reveals large differences in the number of observations obtained. Furthermore, empirical analyses of these different methods reveal that several of them produce both systematic and random errors. These errors can result in erroneous estimations of regression coefficients in terms of direction and/or size as well as an issue where truly significant relationships might be found to be insignificant. This shows that research findings can be influenced by the MM used, which would argue in favor of the establishment of a preferred method as well as more transparency on the utilized method in future studies. This article provides insight into the matching process and methods, suggests a preferred method, and should aid researchers, reviewers, and editors with both combining multiple databases and describing and assessing them.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 285-302 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, situated between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopias zone (AVAZ) and the Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous–Eocene orogenic events whose duration and extent are still controversial. This paper constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240 °C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of the western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered the Early Cretaceous (130–110 Ma) thrust system from 100 Ma. Thrusting resumed at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240 °C and erosion of the gneissic rocks. ZFT and AFT in western and eastern Pelagonia, respectively, testify at ~40 Ma to the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80 °C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at ~33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


2021 ◽  
Author(s):  
Wajdi Belkhiria ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
Adnen Amiri ◽  
Mohamed Hédi Inoubli

<p>The Sahel basin in eastern Tunisia has been subject for hydrocarbon exploration since the early fifties. Despite the presence of a working petroleum system in the area, most of the drilled wells were dry or encountered oil shows that failed to give commercial flow rates. A better understanding of the tectono-sedimentary evolution of the Sahel basin is of great importance for future hydrocarbon prospectivity. In this contribution, we present integration of 2D seismic reflection profiles, exploration wells and new acquired gravity data. These subsurface data reveal that the Sahel basin developed as a passive margin during Jurassic-Early Cretaceous times and was later inverted during the Cenozoic Alpine orogeny. The occurrence of Triassic age evaporites and shales deposited during the Pangea breakup played a fundamental role in the structural style and tectono-sedimentary evolution of the study area. Seismic and gravity data revealed jointly important deep-seated extensional faults, almost along E-W and few along NNE–SSW and NW-SE directions, delimiting horsts and grabens structures. These syn-rift extensional faults controlled deposition, facies distribution and thicknesses of the Jurassic and Early cretaceous series. Most of these inherited deep-seated normal and transform faults are ornamented by different types of salt-related structures. The first phase of salt rising was initiated mainly along these syn-extensional faults in the Late Jurassic forming salt domes and continued into the Early and Late Cretaceous leading to salt-related diapir structures. During this period, the salt diapirism was accompanied by the development of salt withdrawal minibasins, characterized important growth strata due the differential subsidence. These areas represent important immediate kitchen areas to the salt-related structures. The later Late Cretaceous - Cenozoic shortening phases induced preferential rejuvenation of the diapiric structures and led to the inversion of former graben/half-graben structures and ultimately to vertical salt welds along salt ridges. These salt structures represent key elements that remains largely undrilled in the Sahel basin. Our results improve the understanding of salt growth in eastern Tunisia and consequently greatly impact the hydrocarbon prospectivity in the area.</p>


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1263-1272 ◽  
Author(s):  
L. Maves ◽  
G. Schubiger

Drosophila imaginal discs, the precursors of the adult fly appendages, have been the subject of intensive developmental studies, particularly on cell determination. Cultured disc fragments are recognized not only for the ability to maintain their determined state through extra cell divisions but also for the ability to transdetermine, or switch to the determined state of a different disc. An understanding of transdetermination at a molecular level will provide further insight into the requirements for maintaining cell determination. We find that ectopic expression of the Drosophila gene wingless induces transdetermination of foreleg imaginal disc cells to wing cells. This transdetermination occurs in foreleg discs of developing larvae without disc fragmentation. The in situ-transdetermining cells localize to the dorsal region of the foreleg disc. This wingless-induced transdetermination event is remarkably similar to the leg-to-wing switch that occurs after leg disc culture. Thus we have identified a new approach to a molecular dissection of transdetermination.


Sign in / Sign up

Export Citation Format

Share Document