scholarly journals Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer’s disease pathogenesis

2018 ◽  
Vol 115 (8) ◽  
pp. 1697-1706 ◽  
Author(s):  
Xiaopu Zhou ◽  
Yu Chen ◽  
Kin Y. Mok ◽  
Qianhua Zhao ◽  
Keliang Chen ◽  
...  

Alzheimer’s disease (AD) is a leading cause of mortality among the elderly. We performed a whole-genome sequencing study of AD in the Chinese population. In addition to the variants identified in or around the APOE locus (sentinel variant rs73052335, P = 1.44 × 10−14), two common variants, GCH1 (rs72713460, P = 4.36 × 10−5) and KCNJ15 (rs928771, P = 3.60 × 10−6), were identified and further verified for their possible risk effects for AD in three small non-Asian AD cohorts. Genotype–phenotype analysis showed that KCNJ15 variant rs928771 affects the onset age of AD, with earlier disease onset in minor allele carriers. In addition, altered expression level of the KCNJ15 transcript can be observed in the blood of AD subjects. Moreover, the risk variants of GCH1 and KCNJ15 are associated with changes in their transcript levels in specific tissues, as well as changes of plasma biomarkers levels in AD subjects. Importantly, network analysis of hippocampus and blood transcriptome datasets suggests that the risk variants in the APOE, GCH1, and KCNJ15 loci might exert their functions through their regulatory effects on immune-related pathways. Taking these data together, we identified common variants of GCH1 and KCNJ15 in the Chinese population that contribute to AD risk. These variants may exert their functional effects through the immune system.

Brain ◽  
2020 ◽  
Author(s):  
Longfei Jia ◽  
Fangyu Li ◽  
Cuibai Wei ◽  
Min Zhu ◽  
Qiumin Qu ◽  
...  

Abstract Previous genome-wide association studies have identified dozens of susceptibility loci for sporadic Alzheimer’s disease, but few of these loci have been validated in longitudinal cohorts. Establishing predictive models of Alzheimer’s disease based on these novel variants is clinically important for verifying whether they have pathological functions and provide a useful tool for screening of disease risk. In the current study, we performed a two-stage genome-wide association study of 3913 patients with Alzheimer’s disease and 7593 controls and identified four novel variants (rs3777215, rs6859823, rs234434, and rs2255835; Pcombined = 3.07 × 10−19, 2.49 × 10−23, 1.35 × 10−67, and 4.81 × 10−9, respectively) as well as nine variants in the apolipoprotein E region with genome-wide significance (P < 5.0 × 10−8). Literature mining suggested that these novel single nucleotide polymorphisms are related to amyloid precursor protein transport and metabolism, antioxidation, and neurogenesis. Based on their possible roles in the development of Alzheimer’s disease, we used different combinations of these variants and the apolipoprotein E status and successively built 11 predictive models. The predictive models include relatively few single nucleotide polymorphisms useful for clinical practice, in which the maximum number was 13 and the minimum was only four. These predictive models were all significant and their peak of area under the curve reached 0.73 both in the first and second stages. Finally, these models were validated using a separate longitudinal cohort of 5474 individuals. The results showed that individuals carrying risk variants included in the models had a shorter latency and higher incidence of Alzheimer’s disease, suggesting that our models can predict Alzheimer’s disease onset in a population with genetic susceptibility. The effectiveness of the models for predicting Alzheimer’s disease onset confirmed the contributions of these identified variants to disease pathogenesis. In conclusion, this is the first study to validate genome-wide association study-based predictive models for evaluating the risk of Alzheimer’s disease onset in a large Chinese population. The clinical application of these models will be beneficial for individuals harbouring these risk variants, and particularly for young individuals seeking genetic consultation.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6038
Author(s):  
Paulina Trzeciak ◽  
Mariola Herbet ◽  
Jarosław Dudka

The accumulation of amyloid plaques, or misfolded fragments of proteins, leads to the development of a condition known as amyloidosis, which is clinically recognized as a systemic disease. Amyloidosis plays a special role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease, and rheumatoid arthritis (RA). The occurrence of amyloidosis correlates with the aging process of the organism, and since nowadays, old age is determined by the comfort of functioning and the elimination of unpleasant disease symptoms in the elderly, exposure to this subject is justified. In Alzheimer’s disease, amyloid plaques negatively affect glutaminergic and cholinergic transmission and loss of sympathetic protein, while in RA, amyloids stimulated by the activity of the immune system affect the degradation of the osteoarticular bond. The following monograph draws attention to the over-reactivity of the immune system in AD and RA, describes the functionality of the blood–brain barrier as an intermediary medium between RA and AD, and indicates the direction of research to date, focusing on determining the relationship and the cause–effect link between these disorders. The paper presents possible directions for the treatment of amyloidosis, with particular emphasis on innovative therapies.


2020 ◽  
Vol 6 (5) ◽  
pp. 1-7
Author(s):  
Chinonye A Maduagwuna ◽  

Study background: Chronic neuroinflammation is a common emerging hallmark of several neurodegenerative diseases. Alzheimer’s Disease (AD) is the most common cause of dementia among the elderly and is characterized by loss of memory and other cognitive functions.


2020 ◽  
Vol 20 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Sharifa Hasana ◽  
Md. Farhad Hossain ◽  
Md. Siddiqul Islam ◽  
Tapan Behl ◽  
...  

: Alzheimer’s disease (AD) is the most common form of dementia in the elderly and this complex disorder is associated with environmental as well as genetic components. Early-onset AD (EOAD) and late-onset AD (LOAD, more common) are major identified types of AD. The genetics of EOAD is extensively understood with three genes variants such as APP, PSEN1, and PSEN2 leading to disease. On the other hand, some common alleles including APOE are effectively associated with LOAD identified but the genetics of LOAD is not clear to date. It has been accounted that about 5% to 10% of EOAD patients can be explained through mutations in the three familiar genes of EOAD. The APOE ε4 allele augmented the severity of EOAD risk in carriers, and APOE ε4 allele was considered as a hallmark of EOAD. A great number of EOAD patients, who are not genetically explained, indicate that it is not possible to identify disease- triggering genes yet. Although several genes have been identified through using the technology of next-generation sequencing in EOAD families including SORL1, TYROBP, and NOTCH3. A number of TYROBP variants were identified through exome sequencing in EOAD patients and these TYROBP variants may increase the pathogenesis of EOAD. The existence of ε4 allele is responsible for increasing the severity of EOAD. However, several ε4 allele carriers live into their 90s that propose the presence of other LOAD genetic as well as environmental risk factors that are not identified yet. It is urgent to find out missing genetics of EOAD and LOAD etiology to discover new potential genetics facets which will assist to understand the pathological mechanism of AD. These investigations should contribute to developing a new therapeutic candidate for alleviating, reversing and preventing AD. This article based on current knowledge represents the overview of the susceptible genes of EOAD, and LOAD. Next, we represent the probable molecular mechanism which might elucidate the genetic etiology of AD and highlight the role of massively parallel sequencing technologies for novel gene discoveries.


2018 ◽  
Vol 15 (2) ◽  
pp. 104-110 ◽  
Author(s):  
Shohei Kato ◽  
Akira Homma ◽  
Takuto Sakuma

Objective: This study presents a novel approach for early detection of cognitive impairment in the elderly. The approach incorporates the use of speech sound analysis, multivariate statistics, and data-mining techniques. We have developed a speech prosody-based cognitive impairment rating (SPCIR) that can distinguish between cognitively normal controls and elderly people with mild Alzheimer's disease (mAD) or mild cognitive impairment (MCI) using prosodic signals extracted from elderly speech while administering a questionnaire. Two hundred and seventy-three Japanese subjects (73 males and 200 females between the ages of 65 and 96) participated in this study. The authors collected speech sounds from segments of dialogue during a revised Hasegawa's dementia scale (HDS-R) examination and talking about topics related to hometown, childhood, and school. The segments correspond to speech sounds from answers to questions regarding birthdate (T1), the name of the subject's elementary school (T2), time orientation (Q2), and repetition of three-digit numbers backward (Q6). As many prosodic features as possible were extracted from each of the speech sounds, including fundamental frequency, formant, and intensity features and mel-frequency cepstral coefficients. They were refined using principal component analysis and/or feature selection. The authors calculated an SPCIR using multiple linear regression analysis. Conclusion: In addition, this study proposes a binary discrimination model of SPCIR using multivariate logistic regression and model selection with receiver operating characteristic curve analysis and reports on the sensitivity and specificity of SPCIR for diagnosis (control vs. MCI/mAD). The study also reports discriminative performances well, thereby suggesting that the proposed approach might be an effective tool for screening the elderly for mAD and MCI.


2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


Sign in / Sign up

Export Citation Format

Share Document