scholarly journals The bright side of PV production in snow-covered mountains

2019 ◽  
Vol 116 (4) ◽  
pp. 1162-1167 ◽  
Author(s):  
Annelen Kahl ◽  
Jérôme Dujardin ◽  
Michael Lehning

Our work explores the prospect of bringing the temporal production profile of solar photovoltaics (PV) into better correlation with typical electricity consumption patterns in the midlatitudes. To do so, we quantify the potential of three choices for PV installations that increase production during the winter months when electricity is most needed. These are placements that favor (i) high winter irradiance, (ii) high ground-reflected radiation, and (iii) steeper-than-usual panel tilt angles. In addition to spatial estimates of the production potential, we compare the performance of different PV placement scenarios in urban and mountain environments for the country of Switzerland. The results show that the energy deficit in a future fully renewable production from wind power, hydropower, and geothermal power could be significantly reduced when solar PV is installed at high elevations. Because the temporal production patterns match the typical demand more closely than the production in urban environments, electricity production could be shifted from summer to winter without reducing the annual total production. Such mountain installations require significantly less surface area and, combined with steeper panel tilt angles, up to 50% of the winter deficit in electricity production can be mediated.

Author(s):  
FANNOU Jean-Louis Comlan ◽  
SEMASSOU Guy Clarence ◽  
DANGNON Emmanuel ◽  
ADJALLA Dieudonné K ◽  
GEGAN Gérard

In order to make up its energy deficit and reduce its energy imports from neighbouring countries, Benin is opting for the construction of photovoltaic solar micro-power plants in the sunniest regions and to consider injecting it into the existing electricity grid if this locally produced energy is not entirely consumed. With this in mind, a decentralised electricity production project has been initiated. In particular, the project, which is the subject of this presentation, aims to simulate and analyse the impacts of injecting 25 MW of photovoltaic energy production into the existing national electricity grid of the Société Béninoise d'Energie Electrique (SBEE). For this purpose, the dimensioning of the 25MW power plant has been carried out and injected at a specific point of the 20kVA line of the existing electricity network in the NEPLAN software environment, while respecting the requirements for injecting photovoltaic energy into an existing electricity network. Only extreme operating configurations have been studied: the synchronous hollow and synchronous point configuration. Simulation results showed overloads on certain transformer stations in the network, which indicates that adjustments must be made before the actual injection of the electricity produced. Besides, the power grid did not experience any disturbance in the voltage plan and power flows. Finally, the simulations carried out led to the conclusion that the integration of solar PV plants will make it possible to limit the import of energy from Ghana and Nigeria.


2020 ◽  
Vol 18 (1) ◽  
pp. 17
Author(s):  
R. Reski Eka Putra ◽  
Susi Afriani ◽  
Nanda Putri Miefthawati ◽  
Marhama Jelita

ABSTRACTReliability of the electric power system and fulfil the certification of sustainable industries in the palm oil industry are offered by utilizing the potential of renewable energy sources as power plants. This research is aimed to analyze the technical and economic aspects of the Solar PV-Biogas power plant at PT. TBS. The method used in this research is hybrid parallel with the off grid network system. In manual calculations showed an optimal generating system consisting of an anaerobic digester with a lagoon capacity of 28,934.81 m3, 1,560 kW biogas generator, 4,040.22 kWp PV array, 2000 kW bidirectional inverter, and 10,125 units of batteries with capacity of 1,547Ah. Then the system is evaluated using HOMER Pro software with project lifetime of 20 years, and the total electricity production obtained during the life of the project is able to supply loads continuously with an average excess electricity about 25.23%/years of total production. Meanwhile, in the economic analysis of hybrid power plants require an initial investment (NPC) of Rp.233,553,169,589.30, with total CO2 emissions of POME 44,073.75 tons/year, then the cost of Certified Emission Reduction is obtained about Rp.6,611,062,500/year. The calculation of economic feasibility results in a Net Present Value of Rp.136.266.578.753, Payback Period of 13,8 years, and an Internal Rate of Return of 9,41%. Based on the result of techno-economic analysis in the research, it can be concluded that this hybrid generating system has the potential to be developed for study that is more detailed if it is to be implemented.Keywords: HOMER Pro, Off-grid, PT. TBS, Solar PV/Biogas, Techno-economic.


Jurnal Tekno ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 17-37
Author(s):  
Yuda Hardiantara ◽  
Ch Desi Kusmindari ◽  
Amiluddin Zahri

Electricity demand in Indonesia is growing to encourage companies to manage resources effectively and efficiently in order to improve performance and target achievement. Analyzing the productivity index aims to determine the productivity of the benchmark electricity production in the achievement of the company. The results of this study is the productivity index of electricity production period of December 2016 every week that is 163.7, 245.2, 85.08, 57.96, while the period of January 2017 every week is 103.98, 216.18, 269.16, 162.48, ratios that affect the productivity of the production of electric power plant based on order of importance is the ratio of 1 (total production / hours of operation machine) with a weight of 3:22, a ratio of 2 (total electricity production / total number of employees) with a weight of 26.1, a ratio of 3 (the number of gas consumption / total power production) with a weight of 18:58, a ratio of 4 (total electricity consumption own / total power production) with a weight of 10:32, and a ratio of 5 (the total number of employees / number of absent workers) with a weight of 5.76, the lowest value ratio is the ratio of six (the number of hours the engine die / the number of engine operating hours) with a weight of 4:02.


2020 ◽  
Vol 12 (24) ◽  
pp. 10344
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Mohammed Itma

This paper targets the future energy sustainability and aims to estimate the potential energy production from installing photovoltaic (PV) systems on the rooftop of apartment’s residential buildings, which represent the largest building sector. Analysis of the residential building typologies was carried out to select the most used residential building types in terms of building roof area, number of floors, and the number of apartments on each floor. A computer simulation tool has been used to calculate the electricity production for each building type, for three different tilt angles to estimate the electricity production. Tilt angle, spacing between the arrays, the building shape, shading from PV arrays, and other roof elements were analyzed for optimum and maximum electricity production. The electricity production for each household has been compared to typical household electricity consumption and its future consumption in 2030. The results show that installing PV systems on residential buildings can speed the transition to renewable energy and energy sustainability. The electricity production for building types with 2–4 residential units can surplus their estimated future consumption. Building types with 4–8 residential units can produce their electricity consumption in 2030. Building types of 12–24 residential units can produce more than half of their 2030 future consumption.


2020 ◽  
Vol 22 (1-2) ◽  
pp. 21-28
Author(s):  
Iva Batić ◽  
◽  
Željko Đurišić

School and school gym buildings represent a relevant potential for construction of photovoltaic panels, to be integrated into roofs of these buildings. Given that roof structures are passive, construction of photovoltaic systems does not interfere with the building functionality, does not it in any way adversely affect the environment. Installation of photovoltaic systems on building roofs brings the production and consumption of electricity closest possible, therefore such systems ensure significant reduction in power losses in transmission and distribution grids. In addition to locally produced electricity, construction of photovoltaic systems on the school buildings’ roofs produces an educational effect as well. By installing a measuring and acquisition system which would include the measuring data on the photovoltaic power plant production parameters and school electricity consumption into school labs, technology would be closer to students, as well as possibilities to meet the demand for electricity from this basic renewable energy source. This paper presents the results of evaluations of the available roof surfaces of school buildings in Serbia for the photovoltaic panels installation. For each category of school building, an estimate of possible annual production per unit of average roof area was made. Summarizing all the results, estimates of possible installed capacity and annual electricity production for different scenarios are given.


2017 ◽  
Vol 17(32) (2) ◽  
pp. 126-135
Author(s):  
Łukasz Kozar

The article presents changes that occurred in the production of electricity from renewable energy sources in the EU-28 and in Poland in the years of 2010-2015. The analysis of the changes was based on the data from Eurostat and the Local Data Bank. Based on the indicator of the share of electricity generated from renewable sources in gross electricity consumption, Poland in the period under discussion, was characterized as one of the highest dynamics of change among all EU countries. In addition, the article analyzes the situation concerning the production of electricity in Poland in the regional aspect. From the taken analyzes, it is clear that in all voivodeships, apart from Małopolskie voivodeship, in 2015, more electricity was produced from renewable sources compared to 2010. In the period under discussion, the share of electricity production from renewable sources in total electricity production also increased by 99% in Poland.


2021 ◽  
Author(s):  
Maria Sanchez Aparicio ◽  
Enrique González-González ◽  
Jose Antonio Martín ◽  
Luis Javier Sánchez-Aparicio ◽  
Susana Lagüela

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5502
Author(s):  
Dominic Samoita ◽  
Charles Nzila ◽  
Poul Alberg Østergaard ◽  
Arne Remmen

Currently, Kenya depends mainly on oil, geothermal energy and hydro resources for electricity production, however all three have associated issues. Oil-based electricity generation is environmentally harmful, expensive and a burden to the national trade balance. The rivers for hydropower and their tributaries are found in arid and semi-arid areas with erratic rainfall leading to problems of supply security, and geothermal exploitation has cost and risk issues amongst others. Given these problems and the fact that Kenya has a significant yet underexploited potential for photo voltaic (PV)-based power generation, the limited—although growing—exploitation of solar PV in Kenya is explored in this paper as a means of diversifying and stabilising electricity supply. The potential for integration of PV into the Kenyan electricity generation mix is analysed together with the sociotechnical, economic, political, and institutional and policy barriers, which limit PV integration. We argue that these barriers can be overcome with improved and more robust policy regulations, additional investments in research and development, and improved coordination of the use of different renewable energy sources. Most noticeably, storage solutions and other elements of flexibility need to be incorporated to balance the intermittent character of electricity generation based on solar PV.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2727 ◽  
Author(s):  
Sofiane Kichou ◽  
Nikolaos Skandalos ◽  
Petr Wolf

This paper reports on the electrical performance of two bloc-of-flats buildings located in Prague, Czech Republic. Measured data of electrical consumption were used to investigate the effect of photovoltaic (PV) and battery energy storage system (BESS) systems on the overlap between generation and demand. Different PV array configurations and battery storage capacities were considered. Detailed solar analysis was carried out to analyze the solar potential of the building and to assess the PV electricity production. The evaluation of the building performance was done through MATLAB simulations based on one-year monitored data. The simulation results were used for the calculation of the load matching indices: namely, the self-consumption and self-sufficiency. It was found that optimized array tilt and orientation angles can effectively contribute to a better adjustment between electricity demand and solar PV generation. The addition of a façade PV system increases significantly the PV generation and thus the load matching during winter months. Mismatch is further reduced by using the energy flexibility provided by the BESS. Depending on the PV size and BESS capacity, the self-consumption and the self-sufficiency of the building could increase from 55% to 100% and from 24% up to 68%, respectively.


Author(s):  
Abdul Rehman ◽  
Muhammad Irfan ◽  
Sehresh Hena ◽  
Abbas Ali Chandio

Purpose The purpose of this paper is to explore and investigate the electricity consumption and production and its linkage to economic growth in Pakistan. Design/methodology/approach The authors used an augmented Dickey–Fuller unit root test to check the stationarity of the variables, while an autoregressive distributed lag (ARDL) bounds testing approach and causality test were applied to investigate the variables long-term association with the economic growth. Findings The study results show that electricity consumption in the agriculture, commercial and industrial sector has significant association with economic growth, while electricity consumption in the household and street lights demonstrate a non-significant association with the economic growth. Furthermore, results also exposed that electricity production from coal, hydroelectric, natural gas, nuclear and oil sources have significant association with the economic growth of Pakistan. Originality/value This study made a contribution to the literature regarding electricity consumption and production with economic growth in Pakistan by using an ARDL bounds testing approach and causality test. This study provides a guideline to the government of Pakistan that possible steps are needed to improve the electricity production and supply to fulfill the country demand.


Sign in / Sign up

Export Citation Format

Share Document