scholarly journals Apurinic endonuclease-1 preserves neural genome integrity to maintain homeostasis and thermoregulation and prevent brain tumors

2018 ◽  
Vol 115 (52) ◽  
pp. E12285-E12294 ◽  
Author(s):  
Lavinia C. Dumitrache ◽  
Mikio Shimada ◽  
Susanna M. Downing ◽  
Young Don Kwak ◽  
Yang Li ◽  
...  

Frequent oxidative modification of the neural genome is a by-product of the high oxygen consumption of the nervous system. Rapid correction of oxidative DNA lesions is essential, as genome stability is a paramount determinant of neural homeostasis. Apurinic/apyrimidinic endonuclease 1 (APE1; also known as “APEX1” or “REF1”) is a key enzyme for the repair of oxidative DNA damage, although the specific role(s) for this enzyme in the development and maintenance of the nervous system is largely unknown. Here, using conditional inactivation of murine Ape1, we identify critical roles for this protein in the brain selectively after birth, coinciding with tissue oxygenation shifting from a placental supply to respiration. While mice lacking APE1 throughout neurogenesis were viable with little discernible phenotype at birth, rapid and pronounced brain-wide degenerative changes associated with DNA damage were observed immediately after birth leading to early death. Unexpectedly, Ape1Nes-cre mice appeared hypothermic with persistent shivering associated with the loss of thermoregulatory serotonergic neurons. We found that APE1 is critical for the selective regulation of Fos1-induced hippocampal immediate early gene expression. Finally, loss of APE1 in combination with p53 inactivation resulted in a profound susceptibility to brain tumors, including medulloblastoma and glioblastoma, implicating oxidative DNA lesions as an etiologic agent in these diseases. Our study reveals APE1 as a major suppressor of deleterious oxidative DNA damage and uncovers specific and broad pathogenic consequences of respiratory oxygenation in the postnatal nervous system.

2015 ◽  
Vol 197 (17) ◽  
pp. 2792-2809 ◽  
Author(s):  
Sarita Mallik ◽  
Ellen M. Popodi ◽  
Andrew J. Hanson ◽  
Patricia L. Foster

ABSTRACTEscherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure ofE. colito DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that thein vitrointeraction between Rep and Pol IV reported previously also occursin vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecAin vivoand is recruited to sites of DSBs to aid in the restoration of DNA replication.IMPORTANCEDNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstratein vivolocalization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings providein vivoevidence that Pol IV aids in maintaining genomic stability not only by bypassing DNA lesions but also by participating in the restoration of stalled replication forks.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1502
Author(s):  
Fátima Brandão ◽  
Carla Costa ◽  
Maria João Bessa ◽  
Elise Dumortier ◽  
Florence Debacq-Chainiaux ◽  
...  

Several reports on amorphous silica nanomaterial (aSiO2 NM) toxicity have been questioning their safety. Herein, we investigated the in vivo pulmonary toxicity of four variants of aSiO2 NM: SiO2_15_Unmod, SiO2_15_Amino, SiO2_7 and SiO2_40. We focused on alterations in lung DNA and protein integrity, and gene expression following single intratracheal instillation in rats. Additionally, a short-term inhalation study (STIS) was carried out for SiO2_7, using TiO2_NM105 as a benchmark NM. In the instillation study, a significant but slight increase in oxidative DNA damage in rats exposed to the highest instilled dose (0.36 mg/rat) of SiO2_15_Amino was observed in the recovery (R) group. Exposure to SiO2_7 or SiO2_40 markedly increased oxidative DNA lesions in rat lung cells of the exposure (E) group at every tested dose. This damage seems to be repaired, since no changes compared to controls were observed in the R groups. In STIS, a significant increase in DNA strand breaks of the lung cells exposed to 0.5 mg/m3 of SiO2_7 or 50 mg/m3 of TiO2_NM105 was observed in both groups. The detected gene expression changes suggest that oxidative stress and/or inflammation pathways are likely implicated in the induction of (oxidative) DNA damage. Overall, all tested aSiO2 NM were not associated with marked in vivo toxicity following instillation or STIS. The genotoxicity findings for SiO2_7 from instillation and STIS are concordant; however, changes in STIS animals were more permanent/difficult to revert.


2003 ◽  
Vol 50 (1) ◽  
pp. 211-215 ◽  
Author(s):  
Marcin Kruszewski ◽  
Teresa Iwaneńko

Labile iron pool (LIP) constitutes a crossroad of metabolic pathways of iron-containing compounds and is midway between the cellular need for iron, its uptake and storage. In this study we investigated oxidative DNA damage in relation to the labile iron pool in a pair of mouse lymphoma L5178Y (LY) sublines (LY-R and LY-S) differing in sensitivity to hydrogen peroxide. The LY-R cells, which are hydrogen peroxide-sensitive, contain 3 times more labile iron than the hydrogen peroxide-resistant LY-S cells. Using the comet assay, we compared total DNA breakage in the studied cell lines treated with hydrogen peroxide (25 microM for 30 min at 4 degrees C). More DNA damage was found in LY-R cells than in LY-S cells. We also compared the levels of DNA lesions sensitive to specific DNA repair enzymes in both cell lines treated with H(2)O(2). The levels of endonuclease III-sensitive sites and Fapy-DNA glycosylase-sensitive sites were found to be higher in LY-R cells than in LY-S cells. Our data suggest that the sensitivity of LY-R cells to H(2)O(2) is partially caused by the higher yield of oxidative DNA damage, as compared to that in LY-S cells. The critical factor appears to be the availability of transition metal ions that take part in the OH radical-generating Fenton reaction (very likely in the form of LIP).


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1671 ◽  
Author(s):  
Marios G. Krokidis ◽  
Mariarosaria D’Errico ◽  
Barbara Pascucci ◽  
Eleonora Parlanti ◽  
Annalisa Masi ◽  
...  

Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.


2014 ◽  
Vol 80 (17) ◽  
pp. 5493-5502 ◽  
Author(s):  
Fernando Santos-Escobar ◽  
J. Félix Gutiérrez-Corona ◽  
Mario Pedraza-Reyes

ABSTRACTChromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report thatBacillus subtiliscells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficientB. subtilisstrain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes ofB. subtiliscells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death inB. subtilisby a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system.


2015 ◽  
Vol 83 (7) ◽  
pp. 2935-2943 ◽  
Author(s):  
Lisa G. Kuhns ◽  
Ge Wang ◽  
Robert J. Maier

Thioredoxins are highly conserved throughout a wide range of organisms, and they are essential for the isurvival of oxygen-sensitive cells. The gastric pathogenHelicobacter pyloriuses the thioredoxin system to maintain its thiol/disulfide balance. There are two thioredoxins present inH. pylori, Trx1 and Trx2 (herein referred to as TrxA and TrxC). TrxA has been shown to be important as an electron donor for some antioxidant enzymes, but the function of TrxC remains unknown (L. M. Baker, A. Raudonikiene, P. S. Hoffman, and L. B. Poole, J Bacteriol 183:1961–1973, 2001; P. Alamuri and R. J. Maier, J Bacteriol 188:5839–5850, 2006). We demonstrate that both TrxA and TrxC are important in protectingH. pylorifrom oxidative stress. Individual ΔtrxAand ΔtrxCdeletion mutant strains each show a greater abundance of lipid peroxides and suffer more DNA damage and more protein carbonylation than the parent. Both deletion mutants were much more sensitive to O2-mediated viability loss than the parent. Unexpectedly, the oxidative DNA damage and protein carbonylation was more severe in the ΔtrxCmutant than in the ΔtrxAmutant; it had 20-fold- and 4-fold-more carbonylated protein content than the wild type and the ΔtrxAstrain, respectively, after 4 h of atmospheric O2stress.trxtranscript abundance was altered by the deletion of the heterologoustrxgene. The ΔtrxCmutant lacked mouse colonization ability, while the ability to colonize mouse stomachs was significantly reduced in the ΔtrxAmutant.


2020 ◽  
Author(s):  
Nealia C.M. House ◽  
Jacob V. Layer ◽  
Brendan D. Price

AbstractDNA repair requires reorganization of the local chromatin structure to facilitate access to and repair of the DNA. Studying DNA double-strand break (DSB) repair in specific chromatin domains has been aided by the use of sequence-specific endonucleases to generate targeted breaks. Here, we describe a new approach that combines KillerRed, a photosensitizer that generates reactive oxygen species (ROS) when exposed to light, and the genome-targeting properties of the CRISPR/Cas9 system. Fusing KillerRed to catalytically inactive Cas9 (dCas9) generates dCas9-KR, which can then be targeted to any desired genomic region with an appropriate guide RNA. Activation of dCas9-KR with green light generates a local increase in reactive oxygen species, resulting in “clustered” oxidative damage, including both DNA breaks and base damage. Activation of dCas9-KR rapidly (within minutes) increases both γH2AX and recruitment of the KU70/80 complex. Importantly, this damage is repaired within 10 minutes of termination of light exposure, indicating that the DNA damage generated by dCas9-KR is both rapid and transient. Further, repair is carried out exclusively through NHEJ, with no detectable contribution from HR-based mechanisms. Surprisingly, sequencing of repaired DNA damage regions did not reveal any increase in either mutations or INDELs in the targeted region, implying that NHEJ has high fidelity under the conditions of low level, limited damage. The dCas9-KR approach for creating targeted damage has significant advantages over the use of endonucleases, since the duration and intensity of DNA damage can be controlled in “real time” by controlling light exposure. In addition, unlike endonucleases that carry out multiple cut-repair cycles, dCas9-KR produces a single burst of damage, more closely resembling the type of damage experienced during acute exposure to reactive oxygen species or environmental toxins. dCas9-KR is a promising system to induce DNA damage and measure site-specific repair kinetics at clustered DNA lesions.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 520-520
Author(s):  
Artur Slupianek ◽  
Rafal Falinski ◽  
Pawel Znojek ◽  
Tomasz Stoklosa ◽  
Sylwia Flis ◽  
...  

Abstract Abstract 520 Tyrosine kinase inhibitors (TKIs) such as imatinib, dasatinib and nilotinib revolutionized the treatment of BCR-ABL1 kinase-positive chronic myeloid leukemia in chronic phase (CML-CP). Unfortunately, 15–25% of patients initially responding favorably to imatinib will develop acquired drug resistance, which in 40–90% of cases is caused by genomic instability resulting in the appearance of clones expressing TKI resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species (ROS) resulting in excessive oxidative DNA damage such as oxidized DNA bases (8-oxoguanine and 5-hydroxycytosine→uracil) (Nieborowska-Skorska et al., Blood, 2012). Unfaithful and/or inefficient repair of these lesions generates TKI resistant point mutations in BCR-ABL1 kinase. Oxidative DNA lesions may be removed by base excision repair (BER) or, if not removed, will create mismatches, which are repaired by mismatch repair (MMR). Since we found that MMR is inhibited in CML-CP (Stoklosa et al., Cancer Res., 2008), the activity of BER is critical to prevent the accumulation of point mutations. Using an array of specific substrates and inhibitors/blocking antibodies we found that two major glycosylases, uracil-DNA glycosylase UNG2 and 8-oxoguanine glycosylase (OGG1) responsible for the excision of uracil (product of oxidation of cytosine) and 8-oxoguanine (8-oxoG) from DNA, respectively, were inhibited in BCR-ABL1 –transformed cell lines and CD34+ CML cells. The inhibitory effect was even more pronounced in CML blast phase (CML-BP) in comparison to CML-CP, it depended on BCR-ABL1 kinase activity and was not accompanied by deregulation of nuclear expression and/or chromatin association of these glycosylases. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases such as TEL-ABL1, TEL-PDGFbetaR and NPM-ALK did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI we found that UNG2 activity diminished the number of oxidized DNA bases detected by modified comet assay and prevented accumulation of point mutations in reporter gene Na+/K+ATPase, which encode resistance to ouabain. In conclusion, we hypothesize that inhibition of UNG2 and OGG1, accompanied by reduced MMR activity is responsible for accumulation of TKI-resistant BCR-ABL1 kinase point mutations and perhaps also other point mutations facilitating malignant progression of CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 909-909
Author(s):  
Elisabeth Bolton ◽  
Mirle Schemionek ◽  
Hans-Urlich Klein ◽  
Grazyna Hoser ◽  
Sylwia Flis ◽  
...  

Abstract Abstract 909 Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in the appearance of clones carrying BCR-ABL1 kinase mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or those harboring additional chromosomal aberrations, eventually leading to disease relapse and/or malignant progression to blast phase (CML-BP) [Skorski, T., Leukemia and Lymphoma, 2011]. We found that Lin−CD34+CD38− human leukemia stem cells (huLSCs), including the quiescent sub-population, and Lin−CD34+CD38+ human leukemia progenitor cells (huLPCs) accumulate high levels of reactive oxygen species (ROS) resulting in numerous oxidative DNA lesions such as 8-oxoguanine (8-oxoG) and DNA double-strand breaks (DSBs) [Nieborowska-Skorska, Blood, 2012]. huLSCs and huLPCs treated with TKIs continue to exhibit ROS-induced oxidative DNA damage suggesting the persistence of genomic instability in TKI-treated patients. Furthermore, genomic instability in TKI-refractory huLSCs and TKI-sensitive huLPCs may have a varying impact on disease progression and determining novel treatment modalities. To determine if TKI-refractory huLSCs are a source of genomic instability we employed a tetracycline-inducible murine model of CML-CP: SCLtTA/p210BCR-ABL1. Mice exhibiting CML-CP -like disease demonstrated splenomegaly, leukocytosis, and expansion of mature Gr1+/CD11b+ cells. ROS were elevated in Lin−c-Kit+Sca-1+ cells (muLSCs), but not Lin−c-Kit+Sca-1− cells (muLPCs), which was associated with higher mRNA expression of BCR-ABL1 in muLSCs. In addition, ROS levels were directly proportional to BCR-ABL1 kinase expression in transduced CD34+ human hematopoietic cells, thus confirming the “dosage-dependent” effect of BCR-ABL1 on ROS. Among the Lin−c-Kit+Sca-1+ cells, enhanced ROS were detected in TKI-refractory quiescent muLSCs, in CD34−Flt3− long-term and CD34+Flt3− short-term muLSCs, and also in CD34+Flt3+ multipotent progenitors. High levels of ROS in muLSCs were accompanied by aberrant expression of genes regulating ROS metabolism (mitochondrial electron transport, oxidative phosphorylation, hydrogen peroxide synthesis, and detoxification). In addition, muLSCs, including the quiescent sub-population, displayed high levels of oxidative DNA lesions (8-oxoG, and DSBs). ROS-induced oxidative DNA damage in muLSCs was accompanied by genomic instability in CML-CP –like mice, which accumulated a broad range of genetic aberrations recapitulating the heterogeneity of sporadic mutations detected in TKI-naive CML-CP patients. These aberrations include TKI-resistant BCR-ABL1 kinase mutations, deletions in Ikzf1 and Trp53 and additions in Zfp423 and Idh1 genes, which have been associated with CML-CP relapse and progression to CML-BP. Imatinib caused only modest inhibition of ROS and oxidative DNA damage in TKI-refractory muLSCs. In concordance, CML-CP –like mice treated with imatinib continued to accumulate genomic aberrations. Since BCR-ABL1(K1172R) kinase-dead mutant expressed in CD34+ human hematopoietic cells did not enhance ROS, it suggests that BCR-ABL1 kinase-independent mechanisms contribute to genomic instability. In summary, we postulate that ROS-induced oxidative DNA damage resulting in genetic instability may originate in the most primitive TKI-refractory huLSCs in TKI-naive and TKI-treated patients. Disclosures: Lange: Novartis: Honoraria, Research Funding. Müller:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Koschmieder:Novartis / Novartis Foundation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2006 ◽  
Vol 68 (6) ◽  
pp. 469-473 ◽  
Author(s):  
Muthaiya Balu ◽  
Purushotham Sangeetha ◽  
Ganesan Murali ◽  
Chinnakannu Panneerselvam

Sign in / Sign up

Export Citation Format

Share Document