scholarly journals Specificity landscapes unmask submaximal binding site preferences of transcription factors

2018 ◽  
Vol 115 (45) ◽  
pp. E10586-E10595 ◽  
Author(s):  
Devesh Bhimsaria ◽  
José A. Rodríguez-Martínez ◽  
Junkun Pan ◽  
Daniel Roston ◽  
Elif Nihal Korkmaz ◽  
...  

We have developed Differential Specificity and Energy Landscape (DiSEL) analysis to comprehensively compare DNA–protein interactomes (DPIs) obtained by high-throughput experimental platforms and cutting edge computational methods. While high-affinity DNA binding sites are identified by most methods, DiSEL uncovered nuanced sequence preferences displayed by homologous transcription factors. Pairwise analysis of 726 DPIs uncovered homolog-specific differences at moderate- to low-affinity binding sites (submaximal sites). DiSEL analysis of variants of 41 transcription factors revealed that many disease-causing mutations result in allele-specific changes in binding site preferences. We focused on a set of highly homologous factors that have different biological roles but “read” DNA using identical amino acid side chains. Rather than direct readout, our results indicate that DNA noncontacting side chains allosterically contribute to sculpt distinct sequence preferences among closely related members of transcription factor families.

2017 ◽  
Author(s):  
Ramsey I. Kamar ◽  
Edward J. Banigan ◽  
Aykut Erbas ◽  
Rebecca D. Giuntoli ◽  
Monica Olvera de la Cruz ◽  
...  

ABSTRACTThe binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits TF off-rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key E. coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∽1 × 104 M-1s-1, establishing that FD of Fis occurs at the single-binding-site level, and we find that the off-rate saturates at large Fis concentrations in solution. While spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that facilitated dissociation depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF whose structure differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.SIGNIFICANCE STATEMENTTranscription factors (TFs) control biological processes by binding and unbinding to DNA. Therefore it is crucial to understand the mechanisms that affect TF binding kinetics. Recent studies challenge the standard picture of TF binding kinetics by demonstrating cases of proteins in solution accelerating TF dissociation rates through a facilitated dissociation (FD) process. Our study shows that FD can occur at the level of single binding sites, without the action of large protein clusters or long DNA segments. Our results quantitatively support a model of FD in which competitor proteins invade partially dissociated states of DNA-bound TFs. FD is expected to be a general mechanism for modulating gene expression by altering the occupancy of TFs on the genome.Author ContributionsRamsey I. Kamardesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperEdward J. Banigandesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperAykut Erbasdesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperRebecca D. Giuntolidesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperMonica Olvera de la Cruzdesigned research, performed research, wrote the paperReid C. Johnsondesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperJohn F. Markodesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paper


1994 ◽  
Vol 14 (11) ◽  
pp. 7592-7603
Author(s):  
P E Kroeger ◽  
R I Morimoto

Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.


1994 ◽  
Vol 14 (11) ◽  
pp. 7592-7603 ◽  
Author(s):  
P E Kroeger ◽  
R I Morimoto

Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.


2017 ◽  
Vol 114 (16) ◽  
pp. E3251-E3257 ◽  
Author(s):  
Ramsey I. Kamar ◽  
Edward J. Banigan ◽  
Aykut Erbas ◽  
Rebecca D. Giuntoli ◽  
Monica Olvera de la Cruz ◽  
...  

The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∼1×104 M−1s−1, establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.


1994 ◽  
Vol 14 (6) ◽  
pp. 4116-4125 ◽  
Author(s):  
M L Espinás ◽  
J Roux ◽  
J Ghysdael ◽  
R Pictet ◽  
T Grange

We have previously shown that two remote glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase (TAT) gene contain multiple binding sites for several transcription factor families, including the glucocorticoid receptor (GR). We report here the identification of two novel binding sites for members of the Ets family of transcription factors in one of these GRUs. One of these binding sites overlaps the major GR-binding site (GRBS), whereas the other is located in its vicinity. Inactivation of the latter binding site leads to a twofold reduction of the glucocorticoid response, whereas inactivation of the site overlapping the GRBS has no detectable effect. In vivo footprinting analysis reveals that the active site is occupied in a glucocorticoid-independent manner, in a TAT-expressing cell line, even though it is located at a position where there is a glucocorticoid-dependent alteration of the nucleosomal structure. This same site is not occupied in a cell line that does not express TAT but expresses Ets-related DNA-binding activities, suggesting the existence of an inhibitory effect of chromatin structure at a hierarchical level above the nucleosome. The inactive Ets-binding site that overlaps the GRBS is not occupied even in TAT-expressing cells. However, this same overlapping site can confer Ets-dependent stimulation of both basal and glucocorticoid-induced levels when it is isolated from the GRU and duplicated. Ets-1 expression in COS cells mimics the activity of the Ets-related activities present in hepatoma cells. These Ets-binding sites could participate in the integration of the glucocorticoid response of the TAT gene with signal transduction pathways triggered by other nonsteroidal extracellular stimuli.


2020 ◽  
Author(s):  
Angelo Chora ◽  
Dora Pedroso ◽  
Nadja Pejanovic ◽  
Eleni Kyriakou ◽  
Henrique Colaço ◽  
...  

AbstractTranscriptional programs leading to induction of a large number of genes can be rapidly initiated by the activation of only few selected transcription factors. Upon stimulation of macrophages with microbial-associated molecular patterns (MAMPs), the activation of the nuclear factor kappa B (NF-κB) family of transcription factors triggers inflammatory responses that, left uncontrolled, can lead to excessive inflammation with life-threatening consequences for the host. Here we identify and characterize a novel effect of Anthracyclines, a class of drugs currently used as potent anticancer drugs, in the regulation of NF-κB transcriptional activity in BMDMs, in addition to the previously reported DNA damage and histone eviction. Anthracyclines, including Doxorubicin, Daunorubicin and Epirubicin, disturb the complexes formed between the NF-κB subunit RelA and its DNA binding sites, to limit NF-κB-dependent gene transcription during inflammatory responses, including of pivotal pro-inflammatory mediators such as TNF. We observed that suppression of inflammation can also be mediated by Aclarubicin, Doxorubicinone and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other Anthracyclines, but do not induce DNA damage in the tested concentrations. This novel mechanism of action of Anthracyclines, contributing to the reduction of inflammation, is thus independent of the activation of DNA damage responses and may be relevant for the development of novel strategies targeting immune-mediated inflammatory diseases.


1993 ◽  
Vol 178 (5) ◽  
pp. 1681-1692 ◽  
Author(s):  
L R Gottschalk ◽  
D M Giannola ◽  
S G Emerson

Interleukin 3 (IL-3) is a hematopoietic stem-cell growth and differentiation factor that is expressed solely in activated T and NK cells. Studies to date have identified elements 5' to the IL-3 coding sequences that regulate its transcription, but the sequences that confer T cell-specific expression remain to be clearly defined. We have now identified DNA sequences that are required for T cell-restricted IL-3 gene transcription. A series of transient transfections performed with human IL-3-chloramphenicol acetyltransferase (CAT) reporter plasmids in T and non-T cells revealed that a plasmid containing 319 bp of 5' flanking sequences was active exclusively in T cells. Deletion analysis revealed that T cell specificity was conferred by a 49-bp fragment (bp -319 to -270) that included a potential binding site for AP-1 transcription factors 6 bp upstream of a binding site for Elf-1, a member of the Ets family of transcription factors. DNaseI footprint and electrophoretic mobility shift assay analyses performed with MLA-144 T cell nuclear extracts demonstrated that this 49-bp region contains a nuclear protein binding region that includes consensus AP-1 and Elf-1 binding sites. In addition, extracts prepared from purified human T cells contained proteins that bound to synthetic oligonucleotides corresponding to the AP-1 and Elf-1 binding sites. In vitro-transcribed and -translated Elf-1 protein bound specifically to the Elf-1 site, and Elf-1 antisera competed and super shifted nuclear protein complexes present in MLA-144 nuclear extracts. Moreover, addition of anti-Jun family antiserum in electrophoretic mobility shift assay reactions completely blocked formation of the AP-1-related complexes. Transient transfection studies in MLA-144 T cells revealed that constructs containing mutations in the AP-1 site almost completely abolished CAT activity while mutation of the Elf-1 site or the NF-IL-3 site, a previously described nuclear protein binding site (bp. -155 to -148) in the IL-3 promoter, reduced CAT activity to < 25% of the activity given by wild-type constructs. We conclude that expression of the human IL-3 gene requires the AP-1 and Elf-1 binding sites; however, unlike other previously characterized cytokine genes such as IL-2, the AP-1 and Elf-1 factors can bind independently in the IL-3 gene.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 17 (9) ◽  
pp. 4885-4894 ◽  
Author(s):  
A Umezawa ◽  
H Yamamoto ◽  
K Rhodes ◽  
M J Klemsz ◽  
R A Maki ◽  
...  

The activities of ETS transcription factors are modulated by posttranscriptional modifications and cooperation with other proteins. Another factor which could alter the regulation of genes by ETS transcription factors is DNA methylation of their cognate binding sites. The optimal activity of the keratin 18 (K18) gene is dependent upon an ETS binding site within an enhancer region located in the first intron. The methylation of the ETS binding site was correlated with the repression of the K18 gene in normal human tissues and in K18 transgenic mouse tissues. Neither recombinant ETS2 nor endogenous spleen ETS binding activities bound the methylated site effectively. Increased expression of the K18 gene in spleens of transgenic mice by use of an alternative, cryptic promoter 700 bp upstream of the enhancer resulted in modestly decreased methylation of the K18 ETS site and increased RNA expression. Expression in transgenic mice of a mutant K18 gene, which was still capable of activation by ETS factors but was no longer a substrate for DNA methylation of the ETS site, was fivefold higher in spleen and heart. However, expression in other organs such as liver and intestine was similar to that of the wild-type gene. This result suggests that DNA methylation of the K18 ETS site may be functionally important in the tissue-specific repression of the K18 gene. Epigenetic modification of the binding sites for some ETS transcription factors may result in a refractory transcriptional response even in the presence of necessary trans-acting activities.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Julia C. van Kessel ◽  
Luke E. Ulrich ◽  
Igor B. Zhulin ◽  
Bonnie L. Bassler

ABSTRACT LuxR-type transcription factors are the master regulators of quorum sensing in vibrios. LuxR proteins are unique members of the TetR superfamily of transcription factors because they activate and repress large regulons of genes. Here, we used chromatin immunoprecipitation and nucleotide sequencing (ChIP-seq) to identify LuxR binding sites in the Vibrio harveyi genome. Bioinformatics analyses showed that the LuxR consensus binding site at repressed promoters is a symmetric palindrome, whereas at activated promoters it is asymmetric and contains only half of the palindrome. Using a genetic screen, we isolated LuxR mutants that separated activation and repression functions at representative promoters. These LuxR mutants exhibit sequence-specific DNA binding defects that restrict activation or repression activity to subsets of target promoters. Altering the LuxR DNA binding site sequence to one more closely resembling the ideal LuxR consensus motif can restore in vivo function to a LuxR mutant. This study provides a mechanistic understanding of how a single protein can recognize a variety of binding sites to differentially regulate gene expression. IMPORTANCE Bacteria use the cell-cell communication process called quorum sensing to regulate collective behaviors. In vibrios, LuxR-type transcription factors control the quorum-sensing gene expression cascade. LuxR-type proteins are structural homologs of TetR-type transcription factors. LuxR proteins were assumed to function analogously to TetR proteins, which typically bind to a single conserved binding site to repress transcription of one or two genes. We find here that unlike TetR proteins, LuxR acts a global regulator, directly binding upstream of and controlling more than 100 genes. Again unlike TetR, LuxR functions as both an activator and a repressor, and these two activities can be separated by mutagenesis. Finally, the consensus binding motifs driving LuxR-activated and -repressed genes are distinct. This work shows that LuxR, although structurally similar to TetR, has evolved unique features enabling it to differentially control a large regulon of genes in response to quorum-sensing cues.


2021 ◽  
Author(s):  
Chen Chen ◽  
Jie Hou ◽  
Xiaowen Shi ◽  
Hua Yang ◽  
James A. Birchler ◽  
...  

Abstract BackgroundDue to the complexity of the biological systems, the prediction of the potential DNA binding sites for transcription factors remains a difficult problem in computational biology. Genomic DNA sequences and experimental results from parallel sequencing provide available information about the affinity and accessibility of genome and are commonly used features in binding sites prediction. The attention mechanism in deep learning has shown its capability to learn long-range dependencies from sequential data, such as sentences and voices. Until now, no study has applied this approach in binding site inference from massively parallel sequencing data. The successful applications of attention mechanism in similar input contexts motivate us to build and test new methods that can accurately determine the binding sites of transcription factors.ResultsIn this study, we propose a novel tool (named DeepGRN) for transcription factors binding site prediction based on the combination of two components: single attention module and pairwise attention module. The performance of our methods is evaluated on the ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge datasets. The results show that DeepGRN achieves higher unified scores in 6 of 13 targets than any of the top four methods in the DREAM challenge. We also demonstrate that the attention weights learned by the model are correlated with potential informative inputs, such as DNase-Seq coverage and motifs, which provide possible explanations for the predictive improvements in DeepGRN.ConclusionsDeepGRN can automatically and effectively predict transcription factor binding sites from DNA sequences and DNase-Seq coverage. Furthermore, the visualization techniques we developed for the attention modules help to interpret how critical patterns from different types of input features are recognized by our model.


Sign in / Sign up

Export Citation Format

Share Document