scholarly journals Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology

2019 ◽  
Vol 116 (17) ◽  
pp. 8149-8154 ◽  
Author(s):  
Enzo Orlandini ◽  
Davide Marenduzzo ◽  
Davide Michieletto

Topological entanglements severely interfere with important biological processes. For this reason, genomes must be kept unknotted and unlinked during most of a cell cycle. Type II topoisomerase (TopoII) enzymes play an important role in this process but the precise mechanisms yielding systematic disentanglement of DNA in vivo are not clear. Here we report computational evidence that structural-maintenance-of-chromosomes (SMC) proteins—such as cohesins and condensins—can cooperate with TopoII to establish a synergistic mechanism to resolve topological entanglements. SMC-driven loop extrusion (or diffusion) induces the spatial localization of essential crossings, in turn catalyzing the simplification of knots and links by TopoII enzymes even in crowded and confined conditions. The mechanism we uncover is universal in that it does not qualitatively depend on the specific substrate, whether DNA or chromatin, or on SMC processivity; we thus argue that this synergy may be at work across organisms and throughout the cell cycle.

2018 ◽  
Author(s):  
Enzo Orlandini ◽  
Davide Marenduzzo ◽  
Davide Michieletto

Topological entanglements severely interfere with important biological processes. For this reason, genomes must be kept unknotted and unlinked during most of a cell cycle. Type II Topoisomerase (TopoII) enzymes play an important role in this process but the precise mechanisms yielding systematic disentanglement of DNA in vivo are not clear. Here we report computational evidence that Structural Maintenance of Chromosomes (SMC) proteins – such as cohesins and condensins – can cooperate with TopoII to establish a synergistic mechanism to resolve topological entanglements. SMC-driven loop extrusion (or diffusion) induces the spatial localisation of essential crossings in turn catalysing the simplification of knots and links by TopoII enzymes even in crowded and confined conditions. The mechanism we uncover is universal in that it does not qualitatively depend on the specific substrate, whether DNA or chromatin, or on SMC processivity; we thus argue that this synergy may be at work across organisms and throughout the cell cycle.


1982 ◽  
Vol 94 (2) ◽  
pp. 400-405 ◽  
Author(s):  
R E Scott ◽  
B J Hoerl ◽  
J J Wille ◽  
D L Florine ◽  
B R Krawisz ◽  
...  

Experimental evidence is presented that supports a cell cycle model showing that there are five distinct biological processes involved in proadipocyte differentiation. These include: (a) growth arrest at a distinct state in the G1 phase of the cell cycle; (b) nonterminal differentiation; (c) terminal differentiation; (d) loss of the differentiated phenotype; and (e) reinitiation of cell proliferation. Each of these events is shown to be regulated by specific human plasma components or other physiological factors. At two states designated GD and GD', coupling of growth arrest and differentiation is shown to occur. We propose that these mechanisms for the coupling of growth arrest and differentiation are physiologically significant and mimic the regulatory processes that control stem cell proliferation in vivo.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1372 ◽  
Author(s):  
Renae J. Stefanetti ◽  
Sarah Voisin ◽  
Aaron Russell ◽  
Séverine Lamon

The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death. FOXO3 is one of the rare genes that have been consistently linked to longevity in in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle.


1993 ◽  
Vol 264 (2) ◽  
pp. L153-L159 ◽  
Author(s):  
B. D. Uhal ◽  
M. D. Etter

Hypertrophic and normotrophic type II pneumocytes were isolated from pneumonectomized adult rats by unit gravity (1 g) sedimentation or by fluorescence-activated cell sorting (FACS). In vivo or in vitro, hypertrophic cells incorporated significantly more 5-bromo-2'-deoxyuridine or tritiated thymidine into acid-insoluble material than did normotrophic cells. By FACS analysis of cell subpopulations isolated by 1 g, > 97% of normotrophic cells had G0-phase DNA content. In contrast, the cell cycle distribution of hypertrophic cells was 75% G1, 5% S, and 20% G2/M phases. Rates of incorporation of tritiated choline into total cellular phosphatidylcholine (PC) were identical in type II cells isolated from normal or pneumonectomized rats. The intracellular contents of disaturated phosphatidylcholine (DSPC) and total PC, as well as the ratio of these two lipids, were the same in hypertrophic and normotrophic cells from pneumonectomized rats and in cells isolated from normal rats. No significant difference was observed in the rate at which hypertrophic or normotrophic cells incorporated choline into DSPC. These results demonstrate that type II pneumocyte hypertrophy after pneumonectomy reflects balanced cell growth secondary to cell cycle progression in vivo. The data also indicate that epithelial cell hypertrophy after pneumonectomy, in contrast to that which develops after more acute lung injury, occurs without activation of surfactant biosynthesis or storage.


1996 ◽  
Vol 7 (5) ◽  
pp. 791-801 ◽  
Author(s):  
W Zachariae ◽  
K Nasmyth

The abundance of B-type cyclin-CDK complexes is determined by regulated synthesis and degradation of cyclin subunits. Cyclin proteolysis is required for the final exit from mitosis and for the initiation of a new cell cycle. In extracts from frog or clam eggs, degradation is accompanied by ubiquitination of cyclin. Three genes, CDC16, CDC23, and CSE1 have recently been shown to be required specifically for cyclin B proteolysis in yeast. To test whether these genes are required for cyclin ubiquitination, we prepared extracts from G1-arrested yeast cells capable of conjugating ubiquitin to the B-type cyclin Clb2. The ubiquitination activity was cell cycle regulated, required Clb2's destruction box, and was low if not absent in cdc16, cdc23, cdc27, and cse1 mutants. Furthermore all these mutants were also defective in ubiquitination of another mitotic B-type cyclin, Clb3. The Cdc16, Cdc23, and Cdc27 proteins all contain several copies of the tetratricopeptide repeat and are subunits of a complex that is required for the onset of anaphase. The finding that gene products that are required for ubiquitination of Clb2 and Clb3 are also required for cyclin proteolysis in vivo provides the best evidence so far that cyclin B is degraded via the ubiquitin pathway in living cells. Xenopus homologues of Cdc16 and Cdc27 have meanwhile been shown to be associated with a 20S particle that appears to function as a cell cycle-regulated ubiquitin-protein ligase.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800086 ◽  
Author(s):  
Sharon Yunger ◽  
Pinhas Kafri ◽  
Liat Rosenfeld ◽  
Eliraz Greenberg ◽  
Noa Kinor ◽  
...  

Imaging of transcription by quantitative fluorescence-based techniques allows the examination of gene expression kinetics in single cells. Using a cell system for the in vivo visualization of mammalian mRNA transcriptional kinetics at single-gene resolution during the cell cycle, we previously demonstrated a reduction in transcription levels after replication. This phenomenon has been described as a homeostasis mechanism that buffers mRNA transcription levels with respect to the cell cycle stage and the number of transcribing alleles. Here, we examined how transcriptional buffering enforced during S phase affects two different promoters, the cytomegalovirus promoter versus the cyclin D1 promoter, that drive the same gene body. We found that global modulation of histone modifications could completely revert the transcription down-regulation imposed during replication. Furthermore, measuring these levels of transcriptional activity in fixed and living cells showed that the transcriptional potential of the genes was significantly higher than actual transcription levels, suggesting that promoters might normally be limited from reaching their full transcriptional potential.


1996 ◽  
Vol 109 (12) ◽  
pp. 2885-2893 ◽  
Author(s):  
E. Brisch ◽  
M.A. Daggett ◽  
K.A. Suprenant

The most abundant microtubule-associated protein in sea urchin eggs and embryos is the 77 kDa echinoderm microtubule-associated protein (EMAP). EMAP localizes to the mitotic spindle as well as the interphase microtubule array and is a likely target for a cell cycle-activated kinase. To determine if EMAP is phosphorylated in vivo, sea urchin eggs and embryos were metabolically labeled with 32PO4 and a monospecific antiserum was used to immunoprecipitate EMAP from 32P-labeled eggs and embryos. In this study, we demonstrate that the 77 kDa EMAP is phosphorylated in vivo by two distinct mechanisms. In the unfertilized egg, EMAP is constitutively phosphorylated on at least five serine residues. During the first cleavage division following fertilization, EMAP is phosphorylated with a cell cycle-dependent time course. As the embryo enters mitosis, EMAP phosphorylation increases, and as the embryo exits mitosis, phosphorylation decreases. During mitosis, EMAP is phosphorylated on 10 serine residues and two-dimensional phosphopeptide mapping reveals a mitosis-specific site of phosphorylation. At all stages of the cell cycle, a 33 kDa polypeptide copurifies with the 77 kDa EMAP, regardless of phosphorylation state. Antibodies against the cdc2 kinase were used to demonstrate that the 33 kDa polypeptide is the p34cdc2 kinase. The p34cdc2 kinase copurifies with the mitotic apparatus and immunostaining indicates that the p34cdc2 kinase is concentrated at the spindle poles. Models for the interaction of the p34cdc2 kinase and the 77 kDa EMAP are presented.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Shuichiro Higo ◽  
Yoshihiro Asano ◽  
Yuki Masumura ◽  
Yasushi Sakata ◽  
Masafumi Kitakaze ◽  
...  

Background: Tissue fibrosis plays important roles in the pathogenesis of chronic diseases, including heart failure. The mechanism underlying interstitial fibroblast proliferation is a promising analytical target for therapeutic applications. Here we developed quantitative epigenome profiling to identify a critical regulator in interstitial cell populations that emerges during the progression of heart failure. Methods and Results: We subjected pressure-overloaded hearts of mice to trimethylated histone H3 lysine 4 (H3K4me3) ChIP-sequence and RNA-sequence. Expression analysis followed by quantitative H3K4me3 profiling identified 45 fibrosis-related genes with significant H3K4me3 enrichment in failing hearts, including Meox1 transcription factor. Meox1 emerged in the interstitial fibrotic region in failing heart, and intriguingly Meox1 was expressed in the limited population of cardiac fibroblasts both in vivo and in vitro. Meox1-positive fibroblasts were increased in response to a paracrine signal from cardiomyocytes, and knockdown of Meox1 completely inhibited the reactive proliferation of cardiac fibroblasts stimulated by conditioned medium from cardiomyocytes. Gene expression profiling combined with siRNAs clarified that Meox1 depletion resulted in down regulation in the mitosis-related genes including Aurora B kinase. Indeed, Meox1 depletion decreased the cells under mitosis, but conversely increased the proportion of DNA synthesizing cells, thereby inhibited mitotic transition. The cell-cycle synchronization analysis and promoter analysis using live-cell imaging clarified that Meox1 oscillated throughout the cell-cycle and specifically emerged in G2/M phase. Finally, we revealed that Meox1 heterogenously expressed in the interstitial fibrotic are of human ventricular heart tissues from patients with end-stage heart failure. Notably, Meox1 expression was significantly correlated with the fibrosis-related genes in diseased ventricular heart tissues (n=15), suggesting the pathological relevance in clinical settings. Conclusion: Our findings identify a novel cell-cycle regulator and propose that Meox1 is a potential target for therapies aimed at preventing tissue fibrosis.


Sign in / Sign up

Export Citation Format

Share Document