scholarly journals Multiplex targeted mass spectrometry assay for one-shot flavivirus diagnosis

2019 ◽  
Vol 116 (14) ◽  
pp. 6754-6759 ◽  
Author(s):  
Sheena Wee ◽  
Asfa Alli-Shaik ◽  
Relus Kek ◽  
Hannah L. F. Swa ◽  
Wei-Ping Tien ◽  
...  

Targeted proteomic mass spectrometry is emerging as a salient clinical diagnostic tool to track protein biomarkers. However, its strong analytical properties have not been exploited in the diagnosis and typing of flaviviruses. Here, we report the development of a sensitive and specific single-shot robust assay for flavivirus typing and diagnosis using targeted mass spectrometry technology. Our flavivirus parallel reaction monitoring assay (fvPRM) has the ability to track secreted flaviviral nonstructural protein 1 (NS1) over a broad diagnostic and typing window with high sensitivity, specificity, extendibility, and multiplexing capability. These features, pivotal and pertinent to efficient response toward flavivirus outbreaks, including newly emerging flavivirus strains, circumvent the limitations of current diagnostic assays.fvPRM thus carries high potential in positioning itself as a forerunner in delivering early and accurate diagnosis for disease management.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9507
Author(s):  
Dandan Li ◽  
Jie Wu ◽  
Zhongjuan Liu ◽  
Ling Qiu ◽  
Yimin Zhang

Background Distinguishing between different types of thyroid cancers (TC) remains challenging in clinical laboratories. As different tumor types require different clinical interventions, it is necessary to establish new methods for accurate diagnosis of TC. Methods Proteomic analysis of the human serum was performed through data-independent acquisition mass spectrometry for 29 patients with TC (stages I–IV): 13 cases of papillary TC (PTC), 10 cases of medullary TC (MTC), and six cases follicular TC (FTC). In addition, 15 patients with benign thyroid nodules (TNs) and 10 healthy controls (HCs) were included in this study. Subsequently, 17 differentially expressed proteins were identified in 291 patients with TC, including 247 with PTC, 38 with MTC, and six with FTC, and 69 patients with benign TNs and 176 with HC, using enzyme-linked immunosorbent assays. Results In total, 517 proteins were detected in the serum samples using an Orbitrap Q-Exactive-plus mass spectrometer. The amyloid beta A4 protein, apolipoprotein A-IV, gelsolin, contactin-1, gamma-glutamyl hydrolase, and complement factor H-related protein 1 (CFHR1) were selected for further analysis. The median serum CFHR1 levels were significantly higher in the MTC and FTC groups than in the PTC and control groups (P < 0.001). CFHR1 exhibited higher diagnostic performance in distinguishing patients with MTC from those with PTC (P < 0.001), with a sensitivity of 100.0%, specificity of 85.08%, area under the curve of 0.93, and detection cut-off of 0.92 ng/mL. Conclusion CFHR1 may serve as a novel biomarker to distinguish PTC from MTC with high sensitivity and specificity.


Author(s):  
Connie R. Jimenez ◽  
Henk M. W. Verheul

Proteomics is optimally suited to bridge the gap between genomic information on the one hand and biologic functions and disease phenotypes at the other, since it studies the expression and/or post-translational modification (especially phosphorylation) of proteins—the major cellular players bringing about cellular functions—at a global level in biologic specimens. Mass spectrometry technology and (bio)informatic tools have matured to the extent that they can provide high-throughput, comprehensive, and quantitative protein inventories of cells, tissues, and biofluids in clinical samples at low level. In this article, we focus on next-generation proteomics employing nanoliquid chromatography coupled to high-resolution tandem mass spectrometry for in-depth (phospho)protein profiling of tumor tissues and (proximal) biofluids, with a focus on studies employing clinical material. In addition, we highlight emerging proteogenomic approaches for the identification of tumor-specific protein variants, and targeted multiplex mass spectrometry strategies for large-scale biomarker validation. Below we provide a discussion of recent progress, some research highlights, and challenges that remain for clinical translation of proteomic discoveries.


2016 ◽  
Vol 62 (3) ◽  
pp. 325-330
Author(s):  
O.A. Dukova ◽  
M.Yu. Kotlovsky ◽  
A.A. Pokrovsky ◽  
E.V. Suvorova ◽  
T.G. Shivrina ◽  
...  

A method of identification and quantitative determination of baclofen in blood by HPLC with mass spectrometry detection has been developed. It is characterized by high sensitivity, specificity, linearity, accuracy, reproducibility, and a low detection for quantitative determination. The method has been used for diagnostics of acute baclofen poisoning in patients.


2020 ◽  
Vol 66 (2) ◽  
pp. 282-301 ◽  
Author(s):  
Hendrik Neubert ◽  
Christopher M Shuford ◽  
Timothy V Olah ◽  
Fabio Garofolo ◽  
Gary A Schultz ◽  
...  

Abstract Immunoaffinity–mass spectrometry (IA-MS) is an emerging analytical genre with several advantages for profiling and determination of protein biomarkers. Because IA-MS combines affinity capture, analogous to ligand binding assays (LBAs), with mass spectrometry (MS) detection, this platform is often described using the term hybrid methods. The purpose of this report is to provide an overview of the principles of IA-MS and to demonstrate, through application, the unique power and potential of this technology. By combining target immunoaffinity enrichment with the use of stable isotope-labeled internal standards and MS detection, IA-MS achieves high sensitivity while providing unparalleled specificity for the quantification of protein biomarkers in fluids and tissues. In recent years, significant uptake of IA-MS has occurred in the pharmaceutical industry, particularly in the early stages of clinical development, enabling biomarker measurement previously considered unattainable. By comparison, IA-MS adoption by CLIA laboratories has occurred more slowly. Current barriers to IA-MS use and opportunities for expanded adoption are discussed. The path forward involves identifying applications for which IA-MS is the best option compared with LBA or MS technologies alone. IA-MS will continue to benefit from advances in reagent generation, more sensitive and higher throughput MS technologies, and continued growth in use by the broader analytical community. Collectively, the pursuit of these opportunities will secure expanded long-term use of IA-MS for clinical applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shirui Chen ◽  
Hui Zhang ◽  
Mengting Liu ◽  
Yaochi Wang ◽  
Cong Xin ◽  
...  

The development of mass spectrometry has provided a method with extremely high sensitivity and selectivity that can be used to identify protein biomarkers. Epidermal proteins, lipids, and cornified envelopes are involved in the formation of the skin epidermal barrier. The epidermal protein composition changes with age. Therefore, quantitative proteomic changes may be indicative of skin aging. We sought to utilize data-independent acquisition mass spectrometry for noninvasive analysis of epidermal proteins in healthy Chinese individuals of different age groups and sexes. In our study, we completed high-throughput protein detection, analyzed protein differences with MaxQuant software, and performed statistical analyses of the proteome. We obtained interesting findings regarding ceruloplasmin (CP), which exhibited significant differences and is involved in ferroptosis, a signaling pathway significantly associated with aging. There were also several proteins that differed between sexes in the younger group, but the sex differences disappeared with aging. These proteins, which were associated with both aging processes and sex differences, are involved in signaling pathways such as apoptosis, oxidative stress, and genomic stability and can serve as candidate biomarkers for sex differences during aging. Our approach for noninvasive detection of epidermal proteins and its application to accurately quantify protein expression can provide ideas for future epidermal proteomics studies.


Author(s):  
Suraj Mathur

This prospective study was done in the Department of Radio diagnosis Govt. Medical College, Kozhikode. A total of 65 patients who were referred to our department with clinical suspicion of endometrial lesions and incidentally detected endometrial lesions on ultrasonography underwent transvaginal ultrasound and subsequent Imaging evaluation of pelvis MRI has very high sensitivity (95%) and specificity (98%) and is almost as accurate (97%) as histopathology in differentiating benign from malignant lesions. Addition of DWI with ADC mapping to conventional MRI increases its accuracy even more. However there is inherent limitation to MRI in detecting carcinoma in situ and micrometastasis. Keywords: TVS, MRI, Sensitivity, Specificity, Histopathology.


2019 ◽  
Author(s):  
Zachary VanAernum ◽  
Florian Busch ◽  
Benjamin J. Jones ◽  
Mengxuan Jia ◽  
Zibo Chen ◽  
...  

It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes, and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is timeconsuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes, or clarified cell lysates. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization.


Sign in / Sign up

Export Citation Format

Share Document