scholarly journals Novel circulating protein biomarkers for thyroid cancer determined through data-independent acquisition mass spectrometry

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9507
Author(s):  
Dandan Li ◽  
Jie Wu ◽  
Zhongjuan Liu ◽  
Ling Qiu ◽  
Yimin Zhang

Background Distinguishing between different types of thyroid cancers (TC) remains challenging in clinical laboratories. As different tumor types require different clinical interventions, it is necessary to establish new methods for accurate diagnosis of TC. Methods Proteomic analysis of the human serum was performed through data-independent acquisition mass spectrometry for 29 patients with TC (stages I–IV): 13 cases of papillary TC (PTC), 10 cases of medullary TC (MTC), and six cases follicular TC (FTC). In addition, 15 patients with benign thyroid nodules (TNs) and 10 healthy controls (HCs) were included in this study. Subsequently, 17 differentially expressed proteins were identified in 291 patients with TC, including 247 with PTC, 38 with MTC, and six with FTC, and 69 patients with benign TNs and 176 with HC, using enzyme-linked immunosorbent assays. Results In total, 517 proteins were detected in the serum samples using an Orbitrap Q-Exactive-plus mass spectrometer. The amyloid beta A4 protein, apolipoprotein A-IV, gelsolin, contactin-1, gamma-glutamyl hydrolase, and complement factor H-related protein 1 (CFHR1) were selected for further analysis. The median serum CFHR1 levels were significantly higher in the MTC and FTC groups than in the PTC and control groups (P < 0.001). CFHR1 exhibited higher diagnostic performance in distinguishing patients with MTC from those with PTC (P < 0.001), with a sensitivity of 100.0%, specificity of 85.08%, area under the curve of 0.93, and detection cut-off of 0.92 ng/mL. Conclusion CFHR1 may serve as a novel biomarker to distinguish PTC from MTC with high sensitivity and specificity.

Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 425
Author(s):  
Andrés Fernández-Vega Cueto ◽  
Lydia Álvarez ◽  
Montserrat García ◽  
Enol Artime ◽  
Ana Álvarez Barrios ◽  
...  

Animal models of glaucoma, a neurodegenerative disease affecting the retina, offer the opportunity to study candidate molecular biomarkers throughout the disease. In this work, the DBA/2J glaucomatous mouse has been used to study the systemic levels of several proteins previously identified as potential biomarkers of glaucoma, along the pre- to post-glaucomatous transition. Serum samples obtained from glaucomatous and control mice at 4, 10, and 14 months, were classified into different experimental groups according to the optic nerve damage at 14 months old. Quantifications of ten serum proteins were carried out by enzyme immunoassays. Changes in the levels of some of these proteins in the transition to glaucomatous stages were identified, highlighting the significative decrease in the concentration of complement C4a protein. Moreover, the five-protein panel consisting of complement C4a, complement factor H, ficolin-3, apolipoprotein A4, and transthyretin predicted the transition to glaucoma in 78% of cases, and to the advanced disease in 89%. Our data, although still preliminary, suggest that disease development in DBA/2J mice is associated with important molecular changes in immune response and complement system proteins and demonstrate the utility of this model in identifying, at systemic level, potential markers for the diagnosis of glaucoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shirui Chen ◽  
Hui Zhang ◽  
Mengting Liu ◽  
Yaochi Wang ◽  
Cong Xin ◽  
...  

The development of mass spectrometry has provided a method with extremely high sensitivity and selectivity that can be used to identify protein biomarkers. Epidermal proteins, lipids, and cornified envelopes are involved in the formation of the skin epidermal barrier. The epidermal protein composition changes with age. Therefore, quantitative proteomic changes may be indicative of skin aging. We sought to utilize data-independent acquisition mass spectrometry for noninvasive analysis of epidermal proteins in healthy Chinese individuals of different age groups and sexes. In our study, we completed high-throughput protein detection, analyzed protein differences with MaxQuant software, and performed statistical analyses of the proteome. We obtained interesting findings regarding ceruloplasmin (CP), which exhibited significant differences and is involved in ferroptosis, a signaling pathway significantly associated with aging. There were also several proteins that differed between sexes in the younger group, but the sex differences disappeared with aging. These proteins, which were associated with both aging processes and sex differences, are involved in signaling pathways such as apoptosis, oxidative stress, and genomic stability and can serve as candidate biomarkers for sex differences during aging. Our approach for noninvasive detection of epidermal proteins and its application to accurately quantify protein expression can provide ideas for future epidermal proteomics studies.


2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Ziad J. Sahab ◽  
Suzan M. Semaan ◽  
Qing-Xiang Amy Sang

Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Cigdem Akalan Kuyumcu ◽  
Serpil Erol ◽  
Rıza Adaleti ◽  
Seniha Senbayrak ◽  
Secil Deniz ◽  
...  

Objective: Serological tests are the most commonly used tests in the diagnosis of brucellosis; however, each serological test has some drawbacks. In this study, we aimed to determine the value of the Brucella Coombs gel test (BCGT) in the serological diagnosis of brucellosis in comparison with Standard tube agglutination (STA) and ELISA tests. Materials and Methods: The study included 42 patients who were considered to have brucellosis as a preliminary diagnosis. BCGT, Brucella-IgM/IgG ELISA, and STA tests were performed from serum samples of the patients. The correlation of the diagnostic tests was analyzed using Cohen’s Kappa Analysis.  Results: Twenty-seven (64.2%) of 42 patients were diagnosed with brucellosis according to their medical history and clinical and serological tests. The sensitivity and specificity of BCGT to diagnose brucellosis was 96.2%, and 100%, respectively. The sensitivity and specificity for the diagnosis of brucellosis 62.9% and 100% for STA, respectively; 33.3% and 66.6% for Brucella-IgM; and 66.6% and 100% for Brucella-IgG. BCGT was significantly correlated with STA (κ= 0.590) and Brucella-IgG (κ=0.539) Conclusion: BCGT can be utilized as a simple and reliable test in the diagnosis of brucellosis with high sensitivity and specificity. Nevertheless, the sensitivity and specificity of BCGT should be demonstrated by comprehensive studies, including culture-confirmed cases and control groups.


2009 ◽  
Vol 15 (4) ◽  
pp. 455-464 ◽  
Author(s):  
KN Rithidech ◽  
L Honikel ◽  
M Milazzo ◽  
D Madigan ◽  
R Troxell ◽  
...  

The diagnosis of pediatric multiple sclerosis (MS) is challenging due to its low frequency and the overlap with other acquired childhood demyelinating disorders of the central nervous system. To identify potential protein biomarkers which could facilitate the diagnosis, we used two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry to identify proteins associated with pediatric MS. Plasma samples from nine children with MS and nine healthy subjects, matched in aggregate by age and gender, were analyzed for differences in their patterns of protein expression. We found 12 proteins that were significantly up regulated in the pediatric MS group: alpha-1-acid-glycoprotein 1, alpha-1-B-glycoprotein, transthyretin, apoliprotein-C-III, serum amyloid P component, complement factor-I, clusterin, gelsolin, hemopexin, kininogen-1, hCG1993037-isoform, and vitamin D-binding protein. These results show that 2-DE in combination with mass spectrometry is a highly sensitive technique for the identification of blood-based biomarkers. This proteomic approach could lead to a new panel of diagnostic and prognostic markers in pediatric MS.


2007 ◽  
Vol 44 (16) ◽  
pp. 3951
Author(s):  
Svetlana Hakobyan ◽  
Claire L. Harris ◽  
Agustin Tortojada ◽  
Elena Giocochea de Jorge ◽  
Santiago Rodriguez de Cordoba ◽  
...  

2019 ◽  
Vol 116 (14) ◽  
pp. 6754-6759 ◽  
Author(s):  
Sheena Wee ◽  
Asfa Alli-Shaik ◽  
Relus Kek ◽  
Hannah L. F. Swa ◽  
Wei-Ping Tien ◽  
...  

Targeted proteomic mass spectrometry is emerging as a salient clinical diagnostic tool to track protein biomarkers. However, its strong analytical properties have not been exploited in the diagnosis and typing of flaviviruses. Here, we report the development of a sensitive and specific single-shot robust assay for flavivirus typing and diagnosis using targeted mass spectrometry technology. Our flavivirus parallel reaction monitoring assay (fvPRM) has the ability to track secreted flaviviral nonstructural protein 1 (NS1) over a broad diagnostic and typing window with high sensitivity, specificity, extendibility, and multiplexing capability. These features, pivotal and pertinent to efficient response toward flavivirus outbreaks, including newly emerging flavivirus strains, circumvent the limitations of current diagnostic assays.fvPRM thus carries high potential in positioning itself as a forerunner in delivering early and accurate diagnosis for disease management.


2021 ◽  
Author(s):  
Man-Li Tong ◽  
Dan Liu ◽  
Li-Li Liu ◽  
Li-Rong Lin ◽  
Hui-Lin Zhang ◽  
...  

Aim: To screen novel biomarkers in serum of syphilis patients using a mass spectrometry-based method. Materials & methods: Sera were collected from 18 syphilis patients and divided into three groups. Every six serum samples (before and after treatment) in each group were pooled and detected by mass spectrometry. Results: Twenty-five unique peptides corresponding to 15 Treponema pallidum proteins were discovered. Among them, Tp0369 was discovered as a promising biomarker candidate in this study. Tp0524 and Tp0984 levels decreased 0.38-fold and 0.51-fold after BPG treatment, respectively, which may be related to disease outcomes of syphilis. Conclusion: These findings confirmed the presence of detectable T. pallidum protein in patients' serum, which could promote the development of syphilis diagnostics.


Author(s):  
Carl Jenkinson ◽  
Reena Desai ◽  
Andrzej T. Slominski ◽  
Robert C. Tuckey ◽  
Martin Hewison ◽  
...  

Abstract Objectives Clinical evaluation of vitamin D status is conventionally performed by measuring serum levels of a single vitamin D metabolite, 25-hydroxyvitamin D predominantly by immunoassay methodology. However, this neglects the complex metabolic pathways involved in vitamin D bioactivity, including two canonical forms D3 and D2, bioactive 1,25-dihydroxy metabolites and inactive 24-hydroxy and other metabolites. Methods Liquid chromatography-tandem mass spectrometry (LC-MS/MS) can measure multiple analytes in a sample during a single run with high sensitivity and reference level specificity. We therefore aimed to develop and validate a LC-MS/MS method to measure simultaneously 13 circulating vitamin D metabolites and apply it to 103 human serum samples. Results The LC-MS/MS method using a Cookson-type derivatization reagent phenyl-1,2,4-triazoline-3,5-dione (PTAD) quantifies 13 vitamin D metabolites, including mono and dihydroxy-metabolites, as well as CYP11A1-derived D3 and D2 metabolites in a single run. The lower limit of quantitation was 12.5 pg/mL for 1,25(OH)2D3 with accuracy verified by analysis of National Institute of Standards and Technology (NIST) 972a standards. Quantification of seven metabolites (25(OH)D3, 25(OH)D2, 3-epi-25(OH)D3, 20(OH)D3, 24,25(OH)2D3, 1,25(OH)2D3 and 1,20S(OH)2D3) was consistently achieved in human serum samples. Conclusions This profiling method can provide new insight into circulating vitamin D metabolite pathways forming the basis for improved understanding of the role of vitamin D in health and disease.


2019 ◽  
Vol 9 (12) ◽  
Author(s):  
David Murray ◽  
Shaji K. Kumar ◽  
Robert A. Kyle ◽  
Angela Dispenzieri ◽  
Surendra Dasari ◽  
...  

AbstractHigh-sensitivity mass spectrometry assays are available to detect monoclonal immunoglobulins. To better assess the prevalence of monoclonal gammopathy of undetermined significance (MGUS), we identified 300 patients diagnosed with MGUS or related gammopathy who had a prior negative work-up for monoclonal proteins as part of the Olmsted County MGUS screening study. Two mass spectrometry-based detection methods (matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and monoclonal immunoglobulin rapid accurate mass measurements (miRAMM) along with traditional immunofixation were performed on the Olmsted baseline and MGUS diagnostics serum samples. Among the 226 patients considered negative for MGUS based on protein electrophoresis and serum-free light-chain assay, a monoclonal protein could be detected at baseline in 24 patients (10.6%) by immunofixation, 113 patients (50%) by MADLI-TOF mass spectrometry, and 149 patients (65.9%) by miRAMM mass spectrometry. In addition, using miRAMM, some patients demonstrated an oligoclonal to monoclonal transition giving insight into the origin of MGUS. Using the sensitive miRAMM, MGUS is present in 887 of 17,367 persons from the Olmsted County cohort, translating into a prevalence of 5.1% among persons 50 years of age and older. This represents the most accurate prevalence estimate of MGUS thus far.


Sign in / Sign up

Export Citation Format

Share Document