scholarly journals Protein Biomarker Quantification by Immunoaffinity Liquid Chromatography–Tandem Mass Spectrometry: Current State and Future Vision

2020 ◽  
Vol 66 (2) ◽  
pp. 282-301 ◽  
Author(s):  
Hendrik Neubert ◽  
Christopher M Shuford ◽  
Timothy V Olah ◽  
Fabio Garofolo ◽  
Gary A Schultz ◽  
...  

Abstract Immunoaffinity–mass spectrometry (IA-MS) is an emerging analytical genre with several advantages for profiling and determination of protein biomarkers. Because IA-MS combines affinity capture, analogous to ligand binding assays (LBAs), with mass spectrometry (MS) detection, this platform is often described using the term hybrid methods. The purpose of this report is to provide an overview of the principles of IA-MS and to demonstrate, through application, the unique power and potential of this technology. By combining target immunoaffinity enrichment with the use of stable isotope-labeled internal standards and MS detection, IA-MS achieves high sensitivity while providing unparalleled specificity for the quantification of protein biomarkers in fluids and tissues. In recent years, significant uptake of IA-MS has occurred in the pharmaceutical industry, particularly in the early stages of clinical development, enabling biomarker measurement previously considered unattainable. By comparison, IA-MS adoption by CLIA laboratories has occurred more slowly. Current barriers to IA-MS use and opportunities for expanded adoption are discussed. The path forward involves identifying applications for which IA-MS is the best option compared with LBA or MS technologies alone. IA-MS will continue to benefit from advances in reagent generation, more sensitive and higher throughput MS technologies, and continued growth in use by the broader analytical community. Collectively, the pursuit of these opportunities will secure expanded long-term use of IA-MS for clinical applications.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9507
Author(s):  
Dandan Li ◽  
Jie Wu ◽  
Zhongjuan Liu ◽  
Ling Qiu ◽  
Yimin Zhang

Background Distinguishing between different types of thyroid cancers (TC) remains challenging in clinical laboratories. As different tumor types require different clinical interventions, it is necessary to establish new methods for accurate diagnosis of TC. Methods Proteomic analysis of the human serum was performed through data-independent acquisition mass spectrometry for 29 patients with TC (stages I–IV): 13 cases of papillary TC (PTC), 10 cases of medullary TC (MTC), and six cases follicular TC (FTC). In addition, 15 patients with benign thyroid nodules (TNs) and 10 healthy controls (HCs) were included in this study. Subsequently, 17 differentially expressed proteins were identified in 291 patients with TC, including 247 with PTC, 38 with MTC, and six with FTC, and 69 patients with benign TNs and 176 with HC, using enzyme-linked immunosorbent assays. Results In total, 517 proteins were detected in the serum samples using an Orbitrap Q-Exactive-plus mass spectrometer. The amyloid beta A4 protein, apolipoprotein A-IV, gelsolin, contactin-1, gamma-glutamyl hydrolase, and complement factor H-related protein 1 (CFHR1) were selected for further analysis. The median serum CFHR1 levels were significantly higher in the MTC and FTC groups than in the PTC and control groups (P < 0.001). CFHR1 exhibited higher diagnostic performance in distinguishing patients with MTC from those with PTC (P < 0.001), with a sensitivity of 100.0%, specificity of 85.08%, area under the curve of 0.93, and detection cut-off of 0.92 ng/mL. Conclusion CFHR1 may serve as a novel biomarker to distinguish PTC from MTC with high sensitivity and specificity.


2020 ◽  
Vol 21 (15) ◽  
pp. 5449 ◽  
Author(s):  
Junhua Wang ◽  
Akhil Bhalla ◽  
Julie C. Ullman ◽  
Meng Fang ◽  
Ritesh Ravi ◽  
...  

We recently developed a blood–brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5–10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


2020 ◽  
Vol 21 (16) ◽  
pp. 5903
Author(s):  
Nicolai Bjødstrup Palstrøm ◽  
Lars Melholt Rasmussen ◽  
Hans Christian Beck

In the present study, we evaluated four small molecule affinity-based probes based on agarose-immobilized benzamidine (ABA), O-Phospho-L-Tyrosine (pTYR), 8-Amino-hexyl-cAMP (cAMP), or 8-Amino-hexyl-ATP (ATP) for their ability to remove high-abundant proteins such as serum albumin from plasma samples thereby enabling the detection of medium-to-low abundant proteins in plasma samples by mass spectrometry-based proteomics. We compared their performance with the most commonly used immunodepletion method, the Multi Affinity Removal System Human 14 (MARS14) targeting the top 14 most abundant plasma proteins and also the ProteoMiner protein equalization method by label-free quantitative liquid chromatography tandem mass spectrometry (LC-MSMS) analysis. The affinity-based probes demonstrated a high reproducibility for low-abundant plasma proteins, down to picomol per mL levels, compared to the Multi Affinity Removal System (MARS) 14 and the Proteominer methods, and also demonstrated superior removal of the majority of the high-abundant plasma proteins. The ABA-based affinity probe and the Proteominer protein equalization method performed better compared to all other methods in terms of the number of analyzed proteins. All the tested methods were highly reproducible for both high-abundant plasma proteins and low-abundant proteins as measured by correlation analyses of six replicate experiments. In conclusion, our results demonstrated that small-molecule based affinity-based probes are excellent alternatives to the commonly used immune-depletion methods for proteomic biomarker discovery studies in plasma. Data are available via ProteomeXchange with identifier PXD020727.


2019 ◽  
Vol 116 (14) ◽  
pp. 6754-6759 ◽  
Author(s):  
Sheena Wee ◽  
Asfa Alli-Shaik ◽  
Relus Kek ◽  
Hannah L. F. Swa ◽  
Wei-Ping Tien ◽  
...  

Targeted proteomic mass spectrometry is emerging as a salient clinical diagnostic tool to track protein biomarkers. However, its strong analytical properties have not been exploited in the diagnosis and typing of flaviviruses. Here, we report the development of a sensitive and specific single-shot robust assay for flavivirus typing and diagnosis using targeted mass spectrometry technology. Our flavivirus parallel reaction monitoring assay (fvPRM) has the ability to track secreted flaviviral nonstructural protein 1 (NS1) over a broad diagnostic and typing window with high sensitivity, specificity, extendibility, and multiplexing capability. These features, pivotal and pertinent to efficient response toward flavivirus outbreaks, including newly emerging flavivirus strains, circumvent the limitations of current diagnostic assays.fvPRM thus carries high potential in positioning itself as a forerunner in delivering early and accurate diagnosis for disease management.


Sign in / Sign up

Export Citation Format

Share Document