scholarly journals A conformation-specific ON-switch for controlling CAR T cells with an orally available drug

2020 ◽  
Vol 117 (26) ◽  
pp. 14926-14935 ◽  
Author(s):  
Charlotte U. Zajc ◽  
Markus Dobersberger ◽  
Irene Schaffner ◽  
Georg Mlynek ◽  
Dominic Pühringer ◽  
...  

Molecular ON-switches in which a chemical compound induces protein–protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4712-4712
Author(s):  
Jonathan Rosen ◽  
Betsy Rezner ◽  
David Robbins ◽  
Ian Hardy ◽  
Eigen Peralta ◽  
...  

Abstract Adoptive cellular therapies using engineered chimeric antigen receptor T cells (CAR-T cells) are rapidly emerging as a highly effective treatment option for a variety of life-threatening hematological malignancies. Small molecule-mediated modulation of T cell differentiation during the in vitro CAR-T manufacturing process has great potential as a method to optimize the therapeutic potential of cellular immunotherapies. In animal models, T cells with a central or stem memory (TCM/SCM) phenotype display enhanced in vivoefficacy and persistence relative to other T cell subpopulations. We sought to identify small molecules that promote skewing towards a TCM/SCM phenotype during the CAR-T manufacturing process, with associated enhanced viability, expansion and metabolic profiles of the engineered cells. To this end, we developed a high-throughput functional screening platform with primary human T cells using a combination of high-content immunophenotyping and gene expression-based readouts to analyze cells following a high-throughput T cell culture platform that represents a scaled-down model of clinical CAR-T cell production. Multicolor flow cytometry was used to measure expansion, cell viability and the expression levels of cell surface proteins that define TCM cells (e.g., CCR7, CD62L and CD27) and markers of T cell exhaustion (e.g., PD1, LAG3, and TIM3). In parallel, a portion of each sample was evaluated using high content RNA-Seq based gene expression analysis of ~100 genes representing key biological pathways of interest. A variety of known positive and negative control compounds were incorporated into the high-throughput screens to validate the functional assays and to assess the robustness of the 384-well-based screening. The ability to simultaneously correlate small molecule-induced changes in protein and gene expression levels with impacts on cell proliferation and viability of various T cell subsets, enabled us to identify multiple classes of small molecules that favorably enhance the therapeutic properties of CAR-T cells. Consistent with results previously presented by Perkins et al. (ASH, 2015), we identified multiple PI3K inhibitors that could modify expansion of T cells while retaining a TCM/SCM phenotype. In addition, we identified small molecules, and small molecule combinations, that have not been described previously in the literature that could improve CAR-T biology. Several of the top hits from the screens have been evaluated across multiple in vitro (e.g., expansion, viability, CAR expression, serial restimulation/killing, metabolic profiling, and evaluation of exhaustion markers) and in vivo (e.g., mouse tumor models for persistence and killing) assays. Results from the initial screening hits have enabled us to further refine the optimal target profile of a pharmacologically-enhanced CAR-T cell. In addition, we are extending this screening approach to identify small molecules that enhance the trafficking and persistence of CAR-T cells for treating solid tumors. In conclusion, the approach described here identifies unique small molecule modulators that can modify CAR-T cells during in vitro expansion, such that improved profiles can be tracked and selected from screening through in vitro and in vivo functional assays. Disclosures Rosen: Fate Therapeutics: Employment, Equity Ownership. Rezner:Fate Therapeutics, Inc: Employment, Equity Ownership. Robbins:Fate Therapeutics: Employment, Equity Ownership. Hardy:Fate Therapeutics: Employment, Equity Ownership. Peralta:Fate Therapeutics: Employment, Equity Ownership. Maine:Fate Therapeutics: Employment, Equity Ownership. Sabouri:Fate Therapeutics: Employment, Equity Ownership. Reynal:Fate Therapeutics: Employment. Truong:Fate Therapeutics: Employment, Equity Ownership. Moreno:Fate Therapeutics, Inc.: Employment, Equity Ownership. Foster:Fate Therapeutics: Employment, Equity Ownership. Borchelt:Fate Therapeutics: Employment, Equity Ownership. Meza:Fate Therapeutics: Employment, Equity Ownership. Thompson:Juno Therapeutics: Employment, Equity Ownership. Fontenot:Juno Therapeutics: Employment, Equity Ownership. Larson:Juno Therapeutics: Employment, Equity Ownership. Mujacic:Juno Therapeutics: Employment, Equity Ownership. Shoemaker:Fate Therapeutics: Employment, Equity Ownership.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Babak Moghimi ◽  
Sakunthala Muthugounder ◽  
Samy Jambon ◽  
Rachelle Tibbetts ◽  
Long Hung ◽  
...  

AbstractThe ability to utilize preclinical models to predict the clinical toxicity of chimeric antigen receptor (CAR) T cells in solid tumors is tenuous, thereby necessitating the development and evaluation of gated systems. Here we found that murine GD2 CAR-T cells, specific for the tumor-associated antigen GD2, induce fatal neurotoxicity in a costimulatory domain-dependent manner. Meanwhile, human B7H3 CAR-T cells exhibit efficacy in preclinical models of neuroblastoma. Seeking a better CAR, we generated a SynNotch gated CAR-T, GD2-B7H3, recognizing GD2 as the gate and B7H3 as the target. GD2-B7H3 CAR-T cells control the growth of neuroblastoma in vitro and in metastatic xenograft mouse models, with high specificity and efficacy. These improvements come partly from the better metabolic fitness of GD2-B7H3 CAR-T cells, as evidenced by their naïve T-like post-cytotoxicity oxidative metabolism and lower exhaustion profile.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-11
Author(s):  
Chiawei Chang ◽  
Eigen Peralta ◽  
Gloria Hsia ◽  
Bi-Huei Yang ◽  
Wen-I Yeh ◽  
...  

The development of chimeric antigen receptor (CAR) T cell therapeutics is widely recognized as a significant advancement for the treatment of cancer. However, several obstacles currently impede the broad use of CAR T cells, including the inherent process variability, cost of manufacturing, the absolute requirement for precise and uniform genetic editing in the allogeneic setting, and the challenge to keep pace with clonal heterogeneity and tumor growth. Utilizing our previously described induced pluripotent stem cell (iPSC)-derived T (iT) cell platform, we illustrate here the unique ability to address these challenges by creating a consistent CAR iT cell product that can be repeatedly manufactured in large quantities from a renewable iPSC master cell bank that has been engineered to mitigate the occurrence of graft versus host disease (GvHD), antigen escape and tumor relapse. Utilizing our proprietary cellular reprogramming and engineering platform and stage-specific T cell differentiation protocol, we demonstrate that iPSC can be engineered at the single cell level to generate a fully characterized clonal iPSC line, which can then be accessed routinely to yield CAR iT cells in a highly scalable manufacturing process (>100,000 fold expansion). Through bi-allelic targeting of a CAR into the T cell receptor alpha constant (TRAC) region, we generated CAR iT cells with uniform CAR expression (99.0 ± 0.5% CAR+) and complete elimination of T cell receptor (TCR) expression to avoid GvHD in the allogeneic setting. We elected to utilize the 1XX-CAR configuration, which has demonstrated superior anti-tumor performance relative to other CAR designs and when introduced into iT cells displayed enhanced antigen specificity (% specific cytotoxicity at E:T=10:1, antigen positive group: 86.4 ± 7.8; antigen null group: 8.9 ± 3.5). To enhance persistence without reliance on exogenous cytokine support, we engineered signaling-fusion complexes, including IL-7 receptor fusion (RF), into iPSC and studied its impact on iT phenotype, persistence, and efficacy. In vitro, IL-7RF clones demonstrated improved anti-tumor activity in a serial antigen dependent tumor challenge assay (Day 10, relative tumor counts, IL-7RF group: 1.95 ± 0.01; control group: 57.56 ± 4.55, P<0.000001). In a preclinical in vivo model of disseminated leukemia, IL-7RF clones demonstrate enhanced tumor growth inhibition (Day 34, Log [BLI], IL-7RF group: 6.68 ± 1.93; control group: 9.99 ± 0.23, P=0.0143). We next investigated a unique strategy to incorporate multi-antigen targeting potential into anti-CD19 1XX CAR iT cells with the addition of a high-affinity non-cleavable CD16 (hnCD16) Fc receptor. The combination of hnCD16 with anti-CD19 1XX CAR culminated in iT cells capable of multi-antigen specificity through combinatorial use with monoclonal antibodies to tackle antigen escape. Utilizing CD19 negative leukemia cells as targets, superior antibody-dependent cellular cytotoxicity (ADCC) was demonstrated by the combination of hnCD16 CAR iT and Rituximab (% specific cytotoxicity at E:T=1:1, hnCD16 group + Rituximab: 75.64 ± 2.12; control group + Rituximab: 16.98 ± 3.87, P<0.001). To address T cell fitness, the role of CD38 knockout (KO) in T cells was investigated, which we have previously shown to mediate NK cell resistance to oxidative stress induced apoptosis. CD38 gene was disrupted at the iPSC stage to generate 1XX-CAR T cells that lack CD38 expression (% CD38+ population, CD38WT group: 69.67 ± 24.34; CD38KO group: 0.12 ± 0.11) and upon antigen mediated stimulation, CD38KO CAR iT cells showed higher percentages of degranulation (2.3-fold increase in CD107a/b), and IFNγ (4.1-fold increase) and TNFα (2.5-fold increase) production. Antigen specific in vitro tumor killing also was enhanced in CD38KO CAR iT cells (EC50, 3.2-fold decrease). Lastly, to avoid the potential host-mediated rejection, the inclusion of allogeneic defense receptor (ADR) which has been shown to significantly reduce host-mediated rejection will be discussed. Collectively, the described studies demonstrate that iPSCs are an ideal cellular source to generate large-quantities of uniformly multi-edited off-the-shelf CAR T cell products that include a best-in-class CAR design, enhanced product modalities, and complete elimination of TCR expression to avoid the potential of GvHD while maintaining high anti-tumor efficacy in allogeneic setting. Disclosures Hsia: Fate Therapeutics Inc.: Current Employment. Clarke:Fate Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Lee:Fate Therapeutics, Inc.: Current Employment. Robbins:Fate Therapeutics, Inc.: Current Employment. Denholtz:Fate Therapeutics, Inc: Current Employment. Hanok:Fate Therapeutics, Inc.: Current Employment. Carron:Fate Therapeutics, Inc.: Current Employment. Navarrete:Fate Therapeutics, Inc.: Current Employment. ORourke:Fate Therapeutics, Inc.: Current Employment. Sung:Fate Therapeutics, Inc.: Current Employment. Gentile:Fate Therapeutics, Inc.: Current Employment. Nguyen:Fate Therapeutics, Inc.: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12
Author(s):  
Eigen Peralta ◽  
David Robbins ◽  
Emily Carron ◽  
Matthew Denholtz ◽  
Natalie Navarrete ◽  
...  

Despite the success of chimeric antigen receptor (CAR)-T cell therapy in various hematologic malignancies, obstacles to an effective therapeutic outcome are highly dependent on the tumor type being targeted and the immune microenvironment that the CAR-T cells encounter. For example, the presence of suppressive cells and soluble factors in the tumor microenvironment (TME) can prevent continued antitumor function of CAR-T cells. Toward this end, we explored multiple genetic editing options, including IL15-based edits, for improving the persistence and activation state of CAR-T cells in the TME. CAR-T cells engineered to express one of five different molecular barcoded constructs were developed and compared, including two versions of an IL-15 signaling complex (IL15RF), constitutively active IL-7 receptor (ca-IL7R), IL-21 signaling complex (IL21RF), and CD16 transgenes. The use of molecular tags allowed us to track CAR-T cell subpopulations in a complex pool with great resolution via next-generation sequencing (NGS) technology. Subsequent in vitro functional testing was performed to assess CAR-T expansion and function in response to serial stimulation with tumor cells bearing cognate antigen. Results showed that after four rounds of stimulation, cytotoxicity was enhanced in CAR-T cells engineered with the ca-IL7R and IL15RF transgene edits (1.5-fold increase in target cell lysis compared to control). Furthermore, an increased proportion of IL-2 producing cells was seen in CAR-T cells expressing the ca-IL7R and IL15RF-based edits (2-fold increase compared to control). In the initial proof of concept study, the best expansion after eight rounds of stimulation was seen in CAR-Ts engineered with IL15RF-based edits. Furthermore, using NGS to screen for the unique molecular barcodes in the CAR-T cell pool, we confirmed the enrichment of CAR-T cells with IL15RF-based edits over multiple rounds of stimulation. Single cell RNAseq was also performed after four and eight rounds of stimulation, where multiple clusters of CAR-T cells were identified and traced back to performance in vitro. Analysis of single cell clusters without IL15RF-based edits exhibited an increase in expression of the checkpoint receptor CTLA4 (p = 4.2E-2) and transcription factor GATA3 (p = 6.9E-5), while clusters with IL15RF-based edits had increased expression of effector molecules GZMB (p = 3.6E-2) and GZMH (p = 2.9E-8), T cell memory related markers CD62L (p = 5.2E-3) and CD27 (p = 2.2E-6), as well as increased expression of the cell proliferation marker Ki-67 (p = 3.3E-12). Because the presence and expansion of T cells in the tumor can be a good prognostic indicator for response to therapy, we used the pool of barcoded CAR-T cells and tested for enrichment/infiltration in a subcutaneous solid tumor implanted in NSG mice. Importantly, enrichment for CAR-T cells with IL15RF-based edits was observed using an NGS readout for the molecular barcodes present in the tumors. Analysis of the data from spatial transcriptomics on tumor sections, and single cell RNAseq of dissociated tumor samples, further informed our understanding of how CAR-T cells with IL15-based edits performed better in the TME (4-fold increase compared to control). The strategy of using molecular barcoded constructs for evaluating clonal populations of engineered CAR-T cells in a pool is shown here to be feasible and that it can be applied as a precise method to concurrently screen many distinct engineered modalities to improve effector cell function, homing and residence in various solid tumor settings. Disclosures Peralta: Fate Therapeutics, Inc.: Current Employment. Robbins:Fate Therapeutics, Inc.: Current Employment. Carron:Fate Therapeutics, Inc.: Current Employment. Denholtz:Fate Therapeutics, Inc: Current Employment. Navarrete:Fate Therapeutics, Inc.: Current Employment. Lu:Fate Therapeutics, Inc.: Current Employment. Yao:Fate Therapeutics, Inc.: Current Employment. Hanok:Fate Therapeutics, Inc.: Current Employment. Sui:Fate Therapeutics, Inc.: Current Employment. Gentile:Fate Therapeutics, Inc.: Current Employment. Sung:Fate Therapeutics, Inc.: Current Employment. ORourke:Fate Therapeutics, Inc.: Current Employment. Lee:Fate Therapeutics, Inc.: Current Employment. Shoemaker:Fate Therapeutics, Inc.: Current Employment. Nguyen:Fate Therapeutics, Inc.: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A129-A129
Author(s):  
Martin Hosking ◽  
Soheila Shirinbak ◽  
Joy Grant ◽  
Yijia Pan ◽  
Angela Gentile ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T cells for solid tumors have shown modest effectiveness as compared to hematologic malignancies, a consequence of antigen heterogeneity, the immuno-suppressive tumor microenvironment (TME), limited cell persistence, and perhaps most notably, the trafficking of the CAR-T cell to the tumor itself. Early detection of CAR-T cells within a solid tumor has been associated with better outcomes across several clinical trials in diverse tumor settings, suggesting that strategies focused on enhancing CAR-T cell homing to and infiltration into the tumor can yield therapeutic benefit.MethodsHere, we demonstrate that following irradiation or exposure to common chemotherapy drugs, selected tumor cell lines (breast, ovarian, and prostate) specifically upregulate several chemokines, notably the CXCR2 ligand, interleukin (IL)-8, up to 4-fold over baseline control (e.g. 24ng/ml increased to 79ng/ml for SKOV3; 2.9ng/ml increased to 12.5ng/ml for MDA-MB-231). To leverage the upregulation of IL-8 as a mechanism of directing CAR-T cells to the tumor site, we initially engineered primary CAR-T cells to express CXCR2 and demonstrated functional migration, in a dose-dependent manner, to recombinant IL-8 in an in vitro transwell chemotaxis assay; maximal migration of approximately 2-fold over baseline was observed with 10ng/ml of rhIL-8. Similarly, supernatant from pre-conditioned tumor lines also elicited functional enhancements in migration (up to 4-fold specific migration). In addition, ovarian tumors were sub-optimally treated with paclitaxel in vivo, which promoted infiltration of CXCR2+ CAR-T cells and demonstrated enhanced tumor control.ResultsWe then incorporated these findings into our off-the-shelf, iPSC-derived CAR-T cell product platform. Induced pluripotent stem cells (iPSCs) were precisely engineered to co-express CAR and CXCR2 and subsequently differentiated to T cells to generate iPSC-derived CAR-T cells (CAR-iT cells). Like their primary CAR-T cell counterparts, functional chemotaxis of CXCR2+ CAR-iT cells was also observed in response to recombinant IL-8 and preconditioned tumor media. Importantly, CXCR2 expression did not limit CAR-dependent cytolytic function and the specificity of CAR-iT cells, underscoring the compatibility of this approach. Further in vitro and in vivo studies are ongoing and will be presented.ConclusionsCollectively, these data demonstrate that rational engineering of unique chemokine receptors to deliver the ideal chemokine/chemokine receptor match between tumors and effector cells can be leveraged to enhance tumor targeting and trafficking of CAR-iT cells for more effective treatment of solid tumors.Ethics ApprovalThese studies were approved by Fate Therapeutics Institutional Animal Care and Use Committee and were carried out in accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.


2021 ◽  
Vol 141 (5) ◽  
pp. S95
Author(s):  
R.S. Shivde ◽  
D. Jaishankar ◽  
A. Thomas ◽  
I. Le Poole
Keyword(s):  
T Cells ◽  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2021 ◽  
Vol 9 (6) ◽  
pp. e002140
Author(s):  
Giulia Pellizzari ◽  
Olivier Martinez ◽  
Silvia Crescioli ◽  
Robert Page ◽  
Ashley Di Meo ◽  
...  

BackgroundCancer immunotherapy with monoclonal antibodies and chimeric antigen receptor (CAR) T cell therapies can benefit from selection of new targets with high levels of tumor specificity and from early assessments of efficacy and safety to derisk potential therapies.MethodsEmploying mass spectrometry, bioinformatics, immuno-mass spectrometry and CRISPR/Cas9 we identified the target of the tumor-specific SF-25 antibody. We engineered IgE and CAR T cell immunotherapies derived from the SF-25 clone and evaluated potential for cancer therapy.ResultsWe identified the target of the SF-25 clone as the tumor-associated antigen SLC3A2, a cell surface protein with key roles in cancer metabolism. We generated IgE monoclonal antibody, and CAR T cell immunotherapies each recognizing SLC3A2. In concordance with preclinical and, more recently, clinical findings with the first-in-class IgE antibody MOv18 (recognizing the tumor-associated antigen Folate Receptor alpha), SF-25 IgE potentiated Fc-mediated effector functions against cancer cells in vitro and restricted human tumor xenograft growth in mice engrafted with human effector cells. The antibody did not trigger basophil activation in cancer patient blood ex vivo, suggesting failure to induce type I hypersensitivity, and supporting safe therapeutic administration. SLC3A2-specific CAR T cells demonstrated cytotoxicity against tumor cells, stimulated interferon-γ and interleukin-2 production in vitro. In vivo SLC3A2-specific CAR T cells significantly increased overall survival and reduced growth of subcutaneous PC3-LN3-luciferase xenografts. No weight loss, manifestations of cytokine release syndrome or graft-versus-host disease, were detected.ConclusionsThese findings identify efficacious and potentially safe tumor-targeting of SLC3A2 with novel immune-activating antibody and genetically modified cell therapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


Sign in / Sign up

Export Citation Format

Share Document