scholarly journals Large and projected strengthening moisture limitation on end-of-season photosynthesis

2020 ◽  
Vol 117 (17) ◽  
pp. 9216-9222 ◽  
Author(s):  
Yao Zhang ◽  
Nicholas C. Parazoo ◽  
A. Park Williams ◽  
Sha Zhou ◽  
Pierre Gentine

Terrestrial photosynthesis is regulated by plant phenology and environmental conditions, both of which experienced substantial changes in recent decades. Unlike early-season photosynthesis, which is mostly driven by temperature or wet-season onset, late-season photosynthesis can be limited by several factors and the underlying mechanisms are less understood. Here, we analyze the temperature and water limitations on the ending date of photosynthesis (EOP), using data from both remote-sensing and flux tower-based measurements. We find a contrasting spatial pattern of temperature and water limitations on EOP. The threshold separating these is determined by the balance between energy availability and soil water supply. This coordinated temperature and moisture regulation can be explained by “law of minimum,” i.e., as temperature limitation diminishes, higher soil water is needed to support increased vegetation activity, especially during the late growing season. Models project future warming and drying, especially during late season, both of which should further expand the water-limited regions, causing large variations and potential decreases in photosynthesis.

2010 ◽  
Vol 14 (4) ◽  
pp. 351-357 ◽  
Author(s):  
Rivanildo Dallacort ◽  
Paulo S. L. de Freitas ◽  
Rogério T. de Faria ◽  
Antonio C. A. Gonçalves ◽  
Aleksandra G. Jácome ◽  
...  

The performance of the CROPGRO-Drybeans model for the prediction of soil water balance, as well as growth components and bean crop yield, was assessed using data from two field experiments conducted at the State University of Maringá Irrigation Technical Center, Paraná - Brazil, (latitude 23º27'S, longitude 51º57' and altitude 542 m), during the 2005 and 2006 growing season. The model simulations correlated well with measured soil moisture (r > 0.7) for both experiments. However, there were high discrepancies between measured and simulated soil moisture values on the days after rainfall. In addition, it was found that the model exaggerates the effect of water stress during the flowering phase, which leds to underprediction (19 and 29%) of crop yield.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xu Lian ◽  
Shilong Piao ◽  
Anping Chen ◽  
Kai Wang ◽  
Xiangyi Li ◽  
...  

AbstractThe state of ecosystems is influenced strongly by their past, and describing this carryover effect is important to accurately forecast their future behaviors. However, the strength and persistence of this carryover effect on ecosystem dynamics in comparison to that of simultaneous environmental drivers are still poorly understood. Here, we show that vegetation growth carryover (VGC), defined as the effect of present states of vegetation on subsequent growth, exerts strong positive impacts on seasonal vegetation growth over the Northern Hemisphere. In particular, this VGC of early growing-season vegetation growth is even stronger than past and co-occurring climate on determining peak-to-late season vegetation growth, and is the primary contributor to the recently observed annual greening trend. The effect of seasonal VGC persists into the subsequent year but not further. Current process-based ecosystem models greatly underestimate the VGC effect, and may therefore underestimate the CO2 sequestration potential of northern vegetation under future warming.


1992 ◽  
Vol 43 (2) ◽  
pp. 241 ◽  
Author(s):  
JJ Mott ◽  
MM Ludlow ◽  
JH Richards ◽  
AD Parsons

The close correlation between grazing-induced mortality and major climatic patterns in Australian savannas, led us to the hypothesis that moisture conditions during the dry, non-growing season could affect sensitivity to grazing in the subsequent growing season. Using three widespread savanna species (Themeda triandra, Heteropogon contortus and Panicum maximum), this hypothesis was tested experimentally and the mechanisms controlling this response examined and quantified. In T. triandra drought during the dry season led to major mortality in defoliated plants in the next growing season. This mortality was caused by a synchrony of tillering at the commencement of the wet season, leaving few buds for replacement once parent tillers were killed by defoliation. T. triandra was also the most sensitive species to defoliation. This sensitivity was due to the poor ability of the plant to maintain positive carbon gain after defoliation. Several factors contributed to this poor ability, including: low total photosynthetic rate, low specific leaf area, and a large proportion of sheath material with poor photosynthetic capacity remaining after cutting. Both H. contortus and P. maximum growing under irrigated and fertilized conditions did not display any effects of previous moisture treatments when defoliated during the next wet season and were much less sensitive to defoliation than T. triandra.


2021 ◽  
Vol 209 ◽  
pp. 104953
Author(s):  
Xinjun Huang ◽  
Hengfei Wang ◽  
Meng Zhang ◽  
Rainer Horn ◽  
Tusheng Ren

2022 ◽  
Vol 326 ◽  
pp. 107785
Author(s):  
Linfeng Li ◽  
Yanbin Hao ◽  
Zhenzhen Zheng ◽  
Weijin Wang ◽  
Joel A. Biederman ◽  
...  

Author(s):  
Benjamin I Cook ◽  
Kimberly Slinski ◽  
Christa Peters-Lidard ◽  
Amy McNally ◽  
Kristi Arsenault ◽  
...  

AbstractTerrestrial water storage (TWS) provides important information on terrestrial hydroclimate and may have value for seasonal forecasting because of its strong persistence. We use the NASA Hydrological Forecast and Analysis System (NHyFAS) to investigate TWS forecast skill over Africa and assess its value for predicting vegetation activity from satellite estimates of leaf area index (LAI). Forecast skill is high over East and Southern Africa, extending up to 3–6 months in some cases, with more modest skill over West Africa. Highest skill generally occurs during the dry season or beginning of the wet season when TWS anomalies from the previous wet season are most likely to carry forward in time. In East Africa, this occurs prior to and during the transition into the spring “Long Rains” from January–March, while in Southern Africa this period of highest skill starts at the beginning of the dry season in April and extends through to the start of the wet season in October. TWS is highly and positively correlated with LAI, and a logistic regression model shows high cross-validation skill in predicting above or below normal LAI using TWS. Combining the LAI regression model with the NHyFAS forecasts, 1-month lead LAI predictions have high accuracy over East and Southern Africa, with reduced but significant skill at 3-month leads over smaller sub-regions. This highlights the potential value of TWS as an additional source of information for seasonal forecasts over Africa, with direct applications to some of the most vulnerable agricultural regions on the continent.


2005 ◽  
Vol 85 (2) ◽  
pp. 223-232 ◽  
Author(s):  
O. O. Akinremi ◽  
Y. W. Jame ◽  
C. A. Campbell ◽  
R. P. Zentner ◽  
C. Chang ◽  
...  

The ability to simulate the dynamics of soil nitrogen under field conditions will aid our understanding of the nitrogen cycle. Our objective was to test the water and solute components of LEACHMN using data obtained from a field lysimeter study conducted on a medium-textured soil in southwestern Saskatchewan, Canada. Our preliminary evaluation of LEACHMN showed that the retentivity and conductivity functions used in this model were not appropriate for our soil as the original model permitted water transmission through the soil profile too rapidly. We, therefore, incorporated the van Genuchten retentivity function into LEACHMN and used the same soil water retention data to generate the van Genuchten parameters. The modified model was able to reproduce changes in water and chloride concentration after minimal calibration. Overall, the value of 0.45 used for the pan coefficient for soil under fallow and 12 mm used for dispersivity produced a realistic estimation of changes in water and chloride within the soil in the 2 yr of the field experiment. The model reproduced soil water redistribution in a fallow system. There was a tendency to under-estimate soil water content during dry periods, mainly as a result of the model’s tendency to over-estimate evaporation. While the centre of mass of chloride was correctly estimated, the model under-estimated the maximum depth of chloride penetration due to a slight tendency to over-estimate evaporation. Based on our statistical and graphical evaluation of LEACHMN, the modified model is adequate for our subsequent nitrate leaching study. Key words: LEACHMN, lysimeter, dryland, water, chloride, nitrate


1971 ◽  
Vol 49 (10) ◽  
pp. 1821-1832 ◽  
Author(s):  
Edward Sucoff

During the 1969 and 1970 growing season buds were collected almost weekly from matched trees in northeastern Minnesota. Cataphyll primordia for the year n + 1 shoot began forming at the time that internodes in the year n shoot started elongating (late April) and continued forming until early September. Primordia for axillary buds started forming about 2 months later and stopped forming at the same time as cataphylls. The size and deposition activity of the apical dome simultaneously increased during the early growing season and decreased during the late season. The maximum rates in July were over nine cataphylls per day.Rate of cataphyll deposition paralleled elongation of the needles on subtending shoots. Forty to fifty percent of the cataphylls had been formed when shoot growth was 95% complete. Although the bulk of the depositions occurred earlier in 1970, when growing degree days were used as the clock, the 2 years were similar.The results provide quantitative data to complement the histologic emphasis of previous studies.


Sign in / Sign up

Export Citation Format

Share Document