scholarly journals The emergence of classical BSE from atypical/Nor98 scrapie

2019 ◽  
Vol 116 (52) ◽  
pp. 26853-26862 ◽  
Author(s):  
Alvina Huor ◽  
Juan Carlos Espinosa ◽  
Enric Vidal ◽  
Hervé Cassard ◽  
Jean-Yves Douet ◽  
...  

Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.

2005 ◽  
Vol 16 (9) ◽  
pp. 4046-4060 ◽  
Author(s):  
Andrew T. Cowan ◽  
Grant R. Bowman ◽  
Kyle F. Edwards ◽  
J. J. Emerson ◽  
Aaron P. Turkewitz

In some cells, the polypeptides stored in dense core secretory granules condense as ordered arrays. In ciliates such as Tetrahymena thermophila, the resulting crystals function as projectiles, expanding upon exocytosis. Isolation of granule contents previously defined five Granule lattice (Grl) proteins as abundant core constituents, whereas a functional screen identified a sixth family member. We have now expanded this screen to identify the nonredundant components required for projectile assembly. The results, further supported by gene disruption experiments, indicate that six Grl proteins define the core structure. Both in vivo and in vitro data indicate that core assembly begins in the endoplasmic reticulum with formation of specific hetero-oligomeric Grl proprotein complexes. Four additional GRL-like genes were found in the T. thermophila genome. Grl2p and Grl6p are targeted to granules, but the transcripts are present at low levels and neither is essential for core assembly. The ΔGRL6 cells nonetheless showed a subtle change in granule morphology and a marked reduction in granule accumulation. Epistasis analysis suggests this results from accelerated loss of ΔGRL6 granules, rather than from decreased synthesis. Our results not only provide insight into the organization of Grl-based granule cores but also imply that the functions of Grl proteins extend beyond core assembly.


2018 ◽  
Vol 4 (4) ◽  
pp. e253 ◽  
Author(s):  
Ignazio Cali ◽  
Fadi Mikhail ◽  
Kefeng Qin ◽  
Crystal Gregory ◽  
Ani Solanki ◽  
...  

ObjectiveTo describe the clinicopathologic, molecular, and transmissible characteristics of genetic prion disease in a young man carrying the PRNP-G114V variant.MethodsWe performed genetic, histologic, and molecular studies, combined with in vivo transmission studies and in vitro replication studies, to characterize this genetic prion disease.ResultsA 24-year-old American man of Polish descent developed progressive dementia, aphasia, and ataxia, leading to his death 5 years later. Histologic features included widespread spongiform degeneration, gliosis, and infrequent PrP plaque-like deposits within the cerebellum and putamen, best classifying this as a Creutzfeldt-Jakob disease (CJD) subtype. Molecular typing of proteinase K-resistant PrP (resPrPSc) revealed a mixture of type 1 (∼21 kDa) and type 2 (∼19 kDa) conformations with only 2, rather than the usual 3, PrPSc glycoforms. Brain homogenates from the proband failed to transmit prion disease to transgenic Tg(HuPrP) mice that overexpress human PrP and are typically susceptible to sporadic and genetic forms of CJD. When subjected to protein misfolding cyclic amplification, the PrPSc type 2 (∼19 kDa) was selectively amplified.ConclusionsThe features of genetic CJDG114V suggest that residue 114 within the highly conserved palindromic region (113-AGAAAAGA-120) plays an important role in prion conformation and propagation.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 2 (1) ◽  
pp. FDD28 ◽  
Author(s):  
Oleg Babii ◽  
Sergii Afonin ◽  
Tim Schober ◽  
Liudmyla V Garmanchuk ◽  
Liudmyla I Ostapchenko ◽  
...  

Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.


2003 ◽  
Vol 77 (20) ◽  
pp. 11274-11278 ◽  
Author(s):  
B. W. A. van der Strate ◽  
J. L. Hillebrands ◽  
S. S. Lycklama à Nijeholt ◽  
L. Beljaars ◽  
C. A. Bruggeman ◽  
...  

ABSTRACT The role of leukocytes in the in vivo dissemination of cytomegalovirus was studied in this experiment. Rat cytomegalovirus (RCMV) could be transferred to rat granulocytes and monocytes by cocultivation with RCMV-infected fibroblasts in vitro. Intravenous injection of purified infected granulocytes or monocytes resulted in a systemic infection in rats, indicating that our model is a powerful tool to gain further insight into CMV dissemination and the development of new antivirals.


2002 ◽  
Vol 74 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Lanny S. Liebeskind ◽  
Jiri Srogl ◽  
Cecile Savarin ◽  
Concepcion Polanco

Given the stability of the bond between a mercaptide ligand and various redox-active metals, it is of interest that Nature has evolved significant metalloenzymatic processes that involve key interactions of sulfur-containing functionalities with metals such as Ni, Co, Cu, and Fe. From a chemical perspective, it is striking that these metals can function as robust biocatalysts in vivo, even though they are often "poisoned" as catalysts in vitro through formation of refractory metal thiolates. Insight into the nature of this chemical discrepancy is under study in order to open new procedures in synthetic organic and organometallic chemistry.


2021 ◽  
Vol 49 (2) ◽  
pp. 977-985
Author(s):  
Marcus Fändrich ◽  
Matthias Schmidt

Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.


1996 ◽  
Vol 16 (1) ◽  
pp. 414-421 ◽  
Author(s):  
X Nan ◽  
P Tate ◽  
E Li ◽  
A Bird

MeCP2 is a chromosomal protein that is concentrated in the centromeric heterochromatin of mouse cells. In vitro, the protein binds preferentially to DNA containing a single symmetrically methylated CpG. To find out whether the heterochromatic localization of MeCP2 depended on DNA methylation, we transiently expressed MeCP2-LacZ fusion proteins in cultured cells. Intact protein was targeted to heterochromatin in wild-type cells but was inefficiently localized in mutant cells with low levels of genomic DNA methylation. Deletions within MeCP2 showed that localization to heterochromatin required the 85-amino-acid methyl-CpG binding domain but not the remainder of the protein. Thus MeCP2 is a methyl-CpG-binding protein in vivo and is likely to be a major mediator of downstream consequences of DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document