scholarly journals Geochemical transition zone powering microbial growth in subsurface sediments

2020 ◽  
Vol 117 (51) ◽  
pp. 32617-32626
Author(s):  
Rui Zhao ◽  
José M. Mogollón ◽  
Sophie S. Abby ◽  
Christa Schleper ◽  
Jennifer F. Biddle ◽  
...  

No other environment hosts as many microbial cells as the marine sedimentary biosphere. While the majority of these cells are expected to be alive, they are speculated to be persisting in a state of maintenance without net growth due to extreme starvation. Here, we report evidence for in situ growth of anaerobic ammonium-oxidizing (anammox) bacteria in ∼80,000-y-old subsurface sediments from the Arctic Mid-Ocean Ridge. The growth is confined to the nitrate–ammonium transition zone (NATZ), a widespread geochemical transition zone where most of the upward ammonium flux from deep anoxic sediments is being consumed. In this zone the anammox bacteria abundances, assessed by quantification of marker genes, consistently displayed a four order of magnitude increase relative to adjacent layers in four cores. This subsurface cell increase coincides with a markedly higher power supply driven mainly by intensified anammox reaction rates, thereby providing a quantitative link between microbial proliferation and energy availability. The reconstructed draft genome of the dominant anammox bacterium showed an index of replication (iRep) of 1.32, suggesting that 32% of this population was actively replicating. The genome belongs to aScalinduaspecies which we nameCandidatus Scalindua sediminis, so far exclusively found in marine sediments. It has the capacity to utilize urea and cyanate and a mixotrophic lifestyle. Our results demonstrate that specific microbial groups are not only able to survive unfavorable conditions over geological timescales, but can proliferate in situ when encountering ideal conditions with significant consequences for biogeochemical nitrogen cycling.

2019 ◽  
Author(s):  
Rui Zhao ◽  
José M. Mogollón ◽  
Sophie S. Abby ◽  
Christa Schleper ◽  
Jennifer F. Biddle ◽  
...  

The deep biosphere buried in marine sediments was estimated to host an equal number of microbes as found in the above oceans 1. It has been debated if these cells are alive and active 2, and their per cell energy availability does not seem to allow for net population growth 3. Here, we report the growth of anammox bacteria in ∼80,000 year old subsurface sediments indicated by their four orders of magnitude abundance increase in the nitrate-ammonia transition zone (NATZ). Their growth coincides with a local increase in anammox power supply. The genome of the dominant anammox bacterium from the NATZ was reconstructed and showed an increased index of replication confirming in situ active growth. The genome belongs to a new Scalindua species so far exclusively found in marine environments, which has the genetic capacity of urea and cyanate utilization and is enriched in genes allowing it to cope with external environmental stressors, such as energy limitation. Our results suggest that specific microbial groups are not only able to survive over geological timescales, but also thrive in the deep subsurface when encountering favorable conditions.


2012 ◽  
Vol 12 (22) ◽  
pp. 11095-11106 ◽  
Author(s):  
T. Wegner ◽  
J.-U. Grooß ◽  
M. von Hobe ◽  
F. Stroh ◽  
O. Sumińska-Ebersoldt ◽  
...  

Abstract. Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT) the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs) has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite observations by the MLS instrument also show no definite connection between chlorine activation and PSC formation. The inter -and intra-annual variability of vortex-average HCl and HNO3 based on MLS observations is examined for the Arctic winters 2004/2005 to 2010/2011. These observations show that removal of HCl and HNO3 from the gas-phase are not correlated. HNO3 loss exhibits great inter-annual variability depending on prevailing temperatures while HCl loss is continuous through December without considerable inter- or intra-annual variability. Only the recovery of HCl in late winter depends on the level of denitrification. Hence, the occurrence of HNO3 containing PSC particles does not seem to have a significant effect on the speed of initial chlorine activation on a vortex-wide scale.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Suguru Hosokawa ◽  
Kyohei Kuroda ◽  
Takashi Narihiro ◽  
Yoshiteru Aoi ◽  
Noriatsu Ozaki ◽  
...  

Although the anaerobic ammonium oxidation (anammox) process has attracted attention regarding its application in ammonia wastewater treatment based on its efficiency, the physiological characteristics of anammox bacteria remain unclear because of the lack of pure-culture representatives. The coexistence of heterotrophic bacteria has often been observed in anammox reactors, even in those fed with synthetic inorganic nutrient medium. In this study, we recovered 37 draft genome bins from a long-term-operated anammox column reactor and predicted the metabolic pathway of coexisting bacteria, especially Patescibacteria (also known as Candidate phyla radiation). Genes related to the nitrogen cycle were not detected in Patescibacterial bins, whereas nitrite, nitrate, and nitrous oxide-related genes were identified in most of the other bacteria. The pathway predicted for Patescibacteria suggests the lack of nitrogen marker genes and its ability to utilize poly-N-acetylglucosamine produced by dominant anammox bacteria. Coexisting Patescibacteria may play an ecological role in providing lactate and formate to other coexisting bacteria, supporting growth in the anammox reactor. Patescibacteria-centric coexisting bacteria, which produce anammox substrates and scavenge organic compounds produced within the anammox reactor, might be essential for the anammox ecosystem.


2021 ◽  
Vol Volume 53 (Special Issue A) ◽  
pp. 27-34
Author(s):  
M. Belouhova ◽  
N. Dinova ◽  
I. Yotinov ◽  
S. Lincheva ◽  
I. Schneider ◽  
...  

The landfill leachate is heavily polluted wastewater produced in the landfills. The management of the purification of the leachate is especially challenging and that is why new approaches and indicators are needed. The quantity, localization, interaction, clustering of the key microbial groups, responsible for the critical transformation processes can be used as indication leading to better performance of the technology. This study is focused on two bacterial groups (Anammox and Azoarcus-Thauera cluster) which have potential to serve as indicators for the landfill leachate treatment. Their quantity and activity were studied by FISH during lab-scale treatment of leachate from the Municipal Enterprise for Waste Treatment (MEWT), Sofia, Bulgaria. Two activated sludges (AS) were used – one from the MEWT and another form the WWTP (wastewater treatment plant) of Sofia. The obtained results showed that 74% of the COD was eliminated when leachate was diluted 50 and 25 times and 31% - when undiluted leachate was used. At the end of the process (21 day) the Azoarcus-Thauera group formed large aggregations in the AS from MEWT. They were 17.50% of the bacteria there while in the AS from the WWTP of Sofia they represented only 2.61%. The quantity of the anammox bacteria remained almost unchanged during the process and was 10.75% of the community from MEWT which eliminated 98 mg/L more ammonium ions at the end of the process and 6% from the community from the WWTP of Sofia. The two studied groups gave more complex information about the processes in the AS related to the elimination of the nitrogen and carbon containing pollutants. They could be used for better management of the biological processes during landfill leachate treatment. Key words: landfill leachate; anammox, Azoarcus-Thauera; activated sludge; fluorescence in-situ hybridization


2012 ◽  
Vol 12 (8) ◽  
pp. 20561-20591 ◽  
Author(s):  
T. Wegner ◽  
J.-U. Grooß ◽  
M. von Hobe ◽  
F. Stroh ◽  
O. Sumińska-Ebersoldt ◽  
...  

Abstract. Chlorine activation in the Arctic is evaluated by examining the different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for each Kelvin increase in temperature. However, differences between the parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT) the major factors of uncertainty are the number density of nucleated particles and different parameterization choices. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. But as predicted reaction rates on liquid aerosols always exceed those on NAT the overall uncertainty is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to validate the heterogeneous chemistry parameterizations. The ambient conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs) has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite observations also show no definite connection between chlorine activation and PSC formation. The inter- and intra-annual variability of vortex-average HCl and HNO3 based on MLS observations is examined for the Arctic winters 2004/2005 to 2010/2011. These observations show that removal of HCl and HNO3 from the gas-phase are not correlated. HNO3 loss exhibits great inter-annual variability depending on prevailing temperatures while HCl loss is continuous through December without considerable inter- or intra-annual variability. Only the recovery of HCl in late in winter depends on the level of denitrification. Hence, the occurrence of HNO3 containing PSC particles does not seem to have a significant effect on the speed of initial chlorine activation on a vortex-wide scale.


Author(s):  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Sergey Azarov ◽  
Sergey Azarov ◽  
Ekaterina Balashova ◽  
...  

Working with satellite data, has long been an issue for users which has often prevented from a wider use of these data because of Volume, Access, Format and Data Combination. The purpose of the Storm Ice Oil Wind Wave Watch System (SIOWS) developed at Satellite Oceanography Laboratory (SOLab) is to solve the main issues encountered with satellite data and to provide users with a fast and flexible tool to select and extract data within massive archives that match exactly its needs or interest improving the efficiency of the monitoring system of geophysical conditions in the Arctic. SIOWS - is a Web GIS, designed to display various satellite, model and in situ data, it uses developed at SOLab storing, processing and visualization technologies for operational and archived data. It allows synergistic analysis of both historical data and monitoring of the current state and dynamics of the "ocean-atmosphere-cryosphere" system in the Arctic region, as well as Arctic system forecasting based on thermodynamic models with satellite data assimilation.


2016 ◽  
Vol 97 (6) ◽  
pp. 1033-1056 ◽  
Author(s):  
Taneil Uttal ◽  
Sandra Starkweather ◽  
James R. Drummond ◽  
Timo Vihma ◽  
Alexander P. Makshtas ◽  
...  

Abstract International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.


Zootaxa ◽  
2021 ◽  
Vol 5027 (3) ◽  
pp. 351-375
Author(s):  
TANIA ESCALANTE ◽  
GERARDO RODRÍGUEZ-TAPIA ◽  
JUAN J. MORRONE

We provide a preliminary nomenclatural proposal and a digital map of the Nearctic region, based on published regionalizations, especially Dice (1943), and applying the International Code of Area Nomenclature. The Nearctic region is comprised of three subregions (one of them with two dominions), one transition zone and 29 provinces. The Arctic subregion, in northern North America and Greenland, includes the Eskimoan, Hudsonian, Aleutian and Sitkan provinces. The Western subregion, in western North America, includes the Californian dominion, with the Californian and Oregonian provinces; and the Rocky Mountain dominion, including the Montanian, Saskatchewan, Palusian, Artemisian, Coloradan, Kansan, Mohavian, Navahonian, Sonoran, Chihuahuan, Comanche, and Baja California provinces. The Alleghany subregion, in eastern North America, includes the Illinoian, Canadian, Carolinian, Texan, Austroriparian, and Tamaulipan provinces. The Mexican Transition Zone, situated in the area of overlap with the Neotropical region, includes the Sierra Madre Occidental, Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas Highlands provinces.  


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Emilie E. L. Muller ◽  
Shaman Narayanasamy ◽  
Myriam Zeimes ◽  
Cédric C. Laczny ◽  
Laura A. Lebrun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document