scholarly journals Cometabolism of the Superphylum Patescibacteria with Anammox Bacteria in a Long-Term Freshwater Anammox Column Reactor

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Suguru Hosokawa ◽  
Kyohei Kuroda ◽  
Takashi Narihiro ◽  
Yoshiteru Aoi ◽  
Noriatsu Ozaki ◽  
...  

Although the anaerobic ammonium oxidation (anammox) process has attracted attention regarding its application in ammonia wastewater treatment based on its efficiency, the physiological characteristics of anammox bacteria remain unclear because of the lack of pure-culture representatives. The coexistence of heterotrophic bacteria has often been observed in anammox reactors, even in those fed with synthetic inorganic nutrient medium. In this study, we recovered 37 draft genome bins from a long-term-operated anammox column reactor and predicted the metabolic pathway of coexisting bacteria, especially Patescibacteria (also known as Candidate phyla radiation). Genes related to the nitrogen cycle were not detected in Patescibacterial bins, whereas nitrite, nitrate, and nitrous oxide-related genes were identified in most of the other bacteria. The pathway predicted for Patescibacteria suggests the lack of nitrogen marker genes and its ability to utilize poly-N-acetylglucosamine produced by dominant anammox bacteria. Coexisting Patescibacteria may play an ecological role in providing lactate and formate to other coexisting bacteria, supporting growth in the anammox reactor. Patescibacteria-centric coexisting bacteria, which produce anammox substrates and scavenge organic compounds produced within the anammox reactor, might be essential for the anammox ecosystem.

2018 ◽  
Vol 79 (5) ◽  
pp. 975-984 ◽  
Author(s):  
Tatsuru Kamei ◽  
Rawintra Eamrat ◽  
Kenta Shinoda ◽  
Yasuhiro Tanaka ◽  
Futaba Kazama

Abstract Nitrate removal during anaerobic ammonium oxidation (anammox) treatment is a concern for optimization of the anammox process. This study demonstrated the applicability and long-term stability of the coupled anammox and hydrogenotrophic denitrification (CAHD) process as an alternative method for nitrate removal. Laboratory-scale fixed bed anammox reactors (FBR) supplied with H2 to support denitrification were operated under two types of synthetic water. The FBRs showed simultaneous NH4-N and NO3-N removal, indicating that the CAHD process can support NO3-N removal during the anammox process. Intermittent H2 supply (e.g. 5 mL/min for a 1-L reactor, 14/6-min on/off cycle) helped maintain the CAHD process without deteriorating its performance under long-term operation and resulted in a nitrogen removal rate of 0.21 kg-N/m3/d and ammonium, nitrate, and dissolved inorganic nitrogen removal efficiencies of 73.4%, 80.4%, and 77%, respectively. The microbial community structure related to the CAHD process was not influenced by changes in influent water quality, and included the anammox bacteria ‘Candidatus Jettenia’ and a Sulfuritalea hydrogenivorans-like species as the dominant bacteria even after long-term reactor operation, suggesting that these bacteria are key to the CAHD process. These results indicate that the CAHD process is a promising method for enhancing the efficiency of anammox process.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87593-87606 ◽  
Author(s):  
Duntao Shu ◽  
Yanling He ◽  
Hong Yue ◽  
Junling Gao ◽  
Qingyi Wang ◽  
...  

The anaerobic ammonium oxidation (anammox) process has mainly been applied to NH4+–N-rich wastewater with very low levels of organic carbon (<0.5 g COD per g N).


2013 ◽  
Vol 67 (5) ◽  
pp. 968-975 ◽  
Author(s):  
C. G. Casagrande ◽  
A. Kunz ◽  
M. C. De Prá ◽  
C. R. Bressan ◽  
H. M. Soares

The anaerobic ammonium oxidation (ANAMMOX) is a chemolithoautotrophic process, which converts NH4+ to N2 using nitrite (NO2−) as the electron acceptor. This process has very high nitrogen removal rates (NRRs) and is an alternative to classical nitrification/denitrification wastewater treatment. In the present work, a strategy for nitrogen removal using ANAMMOX process was tested evaluating their performance when submitted to high loading rates and very short hydraulic retention times (HRTs). An up-flow ANAMMOX column reactor was inoculated with 30% biomass (v v−1) fed from 100 to 200 mg L−1 of total N (NO2−-N + NH4+-N) at 35 °C. After start-up and process stability the maximum NRR in the up-flow anaerobic sludge blanket (UASB) reactor was 18.3 g-N L−1 d−1 operated at 0.2 h of HRT. FISH (fluorescence in situ hybridization) analysis and process stoichiometry confirmed that ANAMMOX was the prevalent process for nitrogen removal during the experiments. The results point out that high NRRs can be obtained at very short HRTs using up-flow ANAMMOX column reactor configuration.


2015 ◽  
Vol 57 (30) ◽  
pp. 13958-13978 ◽  
Author(s):  
Mumtazah Ibrahim ◽  
Norjan Yusof ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Mohd Ali Hassan

2019 ◽  
Vol 79 (10) ◽  
pp. 1860-1867 ◽  
Author(s):  
Cherh Yih Mak ◽  
Jih Gaw Lin ◽  
Wen Hsing Chen ◽  
Choon Aun Ng ◽  
Mohammed J. K. Bashir

Abstract The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4+-N and 96% NO2−-N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.


2005 ◽  
Vol 71 (2) ◽  
pp. 1066-1071 ◽  
Author(s):  
Didem Güven ◽  
Ana Dapena ◽  
Boran Kartal ◽  
Markus C. Schmid ◽  
Bart Maas ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.


Author(s):  
Filip Gamoń ◽  
Grzegorz Cema ◽  
Aleksandra Ziembińska-Buczyńska

AbstractAnaerobic ammonium oxidation (anammox) is one of the most promising processes for the treatment of ammonium-rich wastewater. It is more effective, cheaper, and more environmentally friendly than the conventional process currently in use for nitrogen removal. Unfortunately, anammox bacteria are sensitive to various substances, including heavy metals and organic matter commonly found in the wastewater treatment plants (WWTPs). Of these deleterious substances, antibiotics are recognized to be important. For decades, the increasing consumption of antibiotics has led to the increased occurrence of antibiotics in the aquatic environment, including wastewater. One of the most important issues related to antibiotic pollution is the generation and transfer of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Here, we will discuss the effect of short- and long-term exposure of the anammox process to antibiotic pollutants; with a special focus on the activity of the anammox bacteria, biomass properties, community structures, the presence of antibiotic resistance genes and combined effect of antibiotics with other substances commonly found in wastewater. Further, the defense mechanisms according to which bacteria adapt against antibiotic stress are speculated upon. This review aims to facilitate a better understanding of the influence of antibiotics and other co-pollutants on the anammox process and to highlight future avenues of research to target gaps in the knowledge.


2017 ◽  
pp. 117
Author(s):  
S. Suneethi ◽  
Kurian Joseph

Release of nitrate and ammonia rich wastewaters into the natural waters promotes eutrophication, aquatic toxicity and deterioration in water quality. Anaerobic Ammonium Oxidation (ANAMMOX) process is an advanced biological nitrogen removal alternative to traditional nitrification – denitrification, which removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility to enrich ANAMMOX bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (An MBR) for N – removal is reported in this paper. The seed culture used was anaerobic digester sludge collected from a Sewage Treatment Plant (STP) in Chennai. Stabilization performance of An MBR is reported for a period of 250 days, for the presence of ANAMMOX bacteria and its sustained activity in terms of Nitrogen transformations to Ammonia, Nitrite and Nitrate along with Hydrazine and Hydroxylamine.


2017 ◽  
Vol 76 (1) ◽  
pp. 79-86 ◽  
Author(s):  
A. Val del Río ◽  
A. Stachurski ◽  
R. Méndez ◽  
J. L. Campos ◽  
J. Surmacz-Górska ◽  
...  

The effects of orange azo dye over ammonia oxidizing bacteria (AOB) and anammox bacteria activities were tested. Performed batch tests indicated that concentrations lower than 650 mgorange/L stimulated AOB activity, while anammox bacteria activity was inhibited at concentrations higher than 25 mgorange/L. Long-term performance of a continuous stirred tank reactor (CSTR) for the partial nitritation and a sequencing batch reactor (SBR) for the anammox process was tested in the presence of 50 mgorange/L. In the case of the partial nitritation process, both the biomass concentration and the specific AOB activity increased after 50 days of orange azo dye addition. Regarding the anammox process, specific activity decreased down to 58% after 12 days of operation with continuous feeding of 50 mgorange/L. However, the anammox activity was completely recovered only 54 days after stopping the dye addition in the feeding. Once the biomass was saturated the azo dye adsorption onto the biomass was insignificant in the CSTR for the partial nitritation process fed with 50 mgorange/L. However, in the SBR the absorption was determined as 6.4 mgorange/g volatile suspended solids. No biological decolorization was observed in both processes.


2006 ◽  
Vol 34 (1) ◽  
pp. 174-178 ◽  
Author(s):  
H.J.M. Op den Camp ◽  
B. Kartal ◽  
D. Guven ◽  
L.A.M.P. van Niftrik ◽  
S.C.M. Haaijer ◽  
...  

In the anaerobic ammonium oxidation (anammox) process, ammonia is oxidized with nitrite as primary electron acceptor under strictly anoxic conditions. The reaction is catalysed by a specialized group of planctomycete-like bacteria. These anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. The reactions are assumed to be carried out in a unique prokaryotic organelle, the anammoxosome. This organelle is surrounded by ladderane lipids, which make the organelle nearly impermeable to hydrazine and protons. The localization of the major anammox protein, hydrazine oxidoreductase, was determined via immunogold labelling to be inside the anammoxosome. The anammox bacteria have been detected in many marine and freshwater ecosystems and were estimated to contribute up to 50% of oceanic nitrogen loss. Furthermore, the anammox process is currently implemented in water treatment for the low-cost removal of ammonia from high-strength waste streams. Recent findings suggested that the anammox bacteria may also use organic acids to convert nitrate and nitrite into dinitrogen gas when ammonia is in short supply.


Sign in / Sign up

Export Citation Format

Share Document